Spaces:
Runtime error
Runtime error
update
Browse files- app.py +2 -2
- inpaint_zoom/app/zoom_in_app.py +162 -149
- inpaint_zoom/app/zoom_out_app.py +36 -34
- inpaint_zoom/zoom_out_app.py +0 -154
- inpaint_zoom/zoom_out_utils.py +0 -45
- utils.py +0 -45
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from inpaint_zoom.app.zoom_out_app import stable_diffusion_zoom_out_app
|
2 |
-
from inpaint_zoom.app.zoom_in_app import
|
3 |
|
4 |
import gradio as gr
|
5 |
|
@@ -23,7 +23,7 @@ with app:
|
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Tab('Zoom In'):
|
26 |
-
|
27 |
with gr.Tab('Zoom Out'):
|
28 |
stable_diffusion_zoom_out_app()
|
29 |
|
|
|
1 |
from inpaint_zoom.app.zoom_out_app import stable_diffusion_zoom_out_app
|
2 |
+
from inpaint_zoom.app.zoom_in_app import StableDiffusionZoomIn
|
3 |
|
4 |
import gradio as gr
|
5 |
|
|
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Tab('Zoom In'):
|
26 |
+
StableDiffusionZoomIn.app()
|
27 |
with gr.Tab('Zoom Out'):
|
28 |
stable_diffusion_zoom_out_app()
|
29 |
|
inpaint_zoom/app/zoom_in_app.py
CHANGED
@@ -22,174 +22,187 @@ stable_paint_negative_prompt_list = [
|
|
22 |
"lurry, bad art, blurred, text, watermark",
|
23 |
]
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
guidance_scale,
|
31 |
-
num_inference_steps,
|
32 |
-
):
|
33 |
-
|
34 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
35 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
36 |
-
pipe = pipe.to("cuda")
|
37 |
-
|
38 |
-
pipe.safety_checker = dummy
|
39 |
-
pipe.enable_attention_slicing()
|
40 |
-
g_cuda = torch.Generator(device='cuda')
|
41 |
-
|
42 |
-
num_init_images = 2
|
43 |
-
seed = 9999
|
44 |
-
height = 512
|
45 |
-
width = height
|
46 |
-
|
47 |
-
current_image = Image.new(mode="RGBA", size=(height, width))
|
48 |
-
mask_image = np.array(current_image)[:,:,3]
|
49 |
-
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
50 |
-
current_image = current_image.convert("RGB")
|
51 |
-
|
52 |
-
init_images = pipe(prompt=[prompt]*num_init_images,
|
53 |
-
negative_prompt=[negative_prompt]*num_init_images,
|
54 |
-
image=current_image,
|
55 |
-
guidance_scale = guidance_scale,
|
56 |
-
height = height,
|
57 |
-
width = width,
|
58 |
-
generator = g_cuda.manual_seed(seed),
|
59 |
-
mask_image=mask_image,
|
60 |
-
num_inference_steps=num_inference_steps)[0]
|
61 |
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
-
|
67 |
-
if num_init_images == 1:
|
68 |
-
init_image_selected = 0
|
69 |
-
else:
|
70 |
-
init_image_selected = init_image_selected - 1
|
71 |
|
72 |
-
num_outpainting_steps = 20 #@param
|
73 |
-
mask_width = 128 #@param
|
74 |
-
num_interpol_frames = 30 #@param
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
current_image = current_image.convert("RGB")
|
95 |
-
images = pipe(prompt=prompt,
|
96 |
-
negative_prompt=negative_prompt,
|
97 |
-
image=current_image,
|
98 |
-
guidance_scale = guidance_scale,
|
99 |
-
height = height,
|
100 |
-
width = width,
|
101 |
-
#this can make the whole thing deterministic but the output less exciting
|
102 |
-
#generator = g_cuda.manual_seed(seed),
|
103 |
-
mask_image=mask_image,
|
104 |
-
num_inference_steps=num_inference_steps)[0]
|
105 |
-
current_image = images[0]
|
106 |
-
current_image.paste(prev_image, mask=prev_image)
|
107 |
-
|
108 |
-
#interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
|
109 |
-
for j in range(num_interpol_frames - 1):
|
110 |
-
interpol_image = current_image
|
111 |
-
interpol_width = round(
|
112 |
-
(1- ( 1-2*mask_width/height )**( 1-(j+1)/num_interpol_frames ) )*height/2
|
113 |
-
)
|
114 |
-
interpol_image = interpol_image.crop((interpol_width,
|
115 |
-
interpol_width,
|
116 |
-
width - interpol_width,
|
117 |
-
height - interpol_width))
|
118 |
-
|
119 |
-
interpol_image = interpol_image.resize((height, width))
|
120 |
-
|
121 |
-
#paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
|
122 |
-
interpol_width2 = round(
|
123 |
-
( 1 - (height-2*mask_width) / (height-2*interpol_width) ) / 2*height
|
124 |
-
)
|
125 |
-
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
|
126 |
-
interpol_image.paste(prev_image_fix_crop, mask = prev_image_fix_crop)
|
127 |
-
|
128 |
-
all_frames.append(interpol_image)
|
129 |
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
|
138 |
|
139 |
|
140 |
-
def
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
-
|
150 |
-
text2image_in_prompt = gr.Textbox(
|
151 |
-
lines=1,
|
152 |
-
value=stable_paint_prompt_list[0],
|
153 |
-
label='Prompt'
|
154 |
-
)
|
155 |
-
|
156 |
-
text2image_in_negative_prompt = gr.Textbox(
|
157 |
-
lines=1,
|
158 |
-
value=stable_paint_negative_prompt_list[0],
|
159 |
-
label='Negative Prompt'
|
160 |
-
)
|
161 |
-
|
162 |
-
with gr.Accordion("Advanced Options", open=False):
|
163 |
-
text2image_in_guidance_scale = gr.Slider(
|
164 |
-
minimum=0.1,
|
165 |
-
maximum=15,
|
166 |
-
step=0.1,
|
167 |
-
value=7.5,
|
168 |
-
label='Guidance Scale'
|
169 |
)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
value=50,
|
176 |
-
label='Num Inference Step'
|
177 |
)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"lurry, bad art, blurred, text, watermark",
|
23 |
]
|
24 |
|
25 |
+
class StableDiffusionZoomIn:
|
26 |
+
def __init__(self):
|
27 |
+
self.pipe = None
|
28 |
+
|
29 |
+
def load_model(self, model_id):
|
30 |
+
if self.pipe is None:
|
31 |
+
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
32 |
+
|
33 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
34 |
+
self.pipe = self.pipe.to("cuda")
|
35 |
+
|
36 |
+
self.pipe.safety_checker = dummy
|
37 |
+
self.pipe.enable_attention_slicing()
|
38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
39 |
+
self.g_cuda = torch.Generator(device='cuda')
|
40 |
+
|
41 |
+
return self.pipe
|
42 |
+
|
43 |
+
def generate_video(
|
44 |
+
self,
|
45 |
+
model_id,
|
46 |
+
prompt,
|
47 |
+
negative_prompt,
|
48 |
+
guidance_scale,
|
49 |
+
num_inference_steps,
|
50 |
+
):
|
51 |
+
|
52 |
+
pipe = self.load_model(model_id)
|
53 |
|
54 |
+
num_init_images = 2
|
55 |
+
seed = 9999
|
56 |
+
height = 512
|
57 |
+
width = height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
current_image = Image.new(mode="RGBA", size=(height, width))
|
60 |
+
mask_image = np.array(current_image)[:,:,3]
|
61 |
+
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
62 |
+
current_image = current_image.convert("RGB")
|
63 |
|
64 |
+
init_images = pipe(prompt=[prompt]*num_init_images,
|
65 |
+
negative_prompt=[negative_prompt]*num_init_images,
|
66 |
+
image=current_image,
|
67 |
+
guidance_scale = guidance_scale,
|
68 |
+
height = height,
|
69 |
+
width = width,
|
70 |
+
generator = self.g_cuda.manual_seed(seed),
|
71 |
+
mask_image=mask_image,
|
72 |
+
num_inference_steps=num_inference_steps)[0]
|
73 |
|
74 |
|
75 |
+
image_grid(init_images, rows=1, cols=num_init_images)
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
+
init_image_selected = 1 #@param
|
79 |
+
if num_init_images == 1:
|
80 |
+
init_image_selected = 0
|
81 |
+
else:
|
82 |
+
init_image_selected = init_image_selected - 1
|
83 |
|
84 |
+
num_outpainting_steps = 20 #@param
|
85 |
+
mask_width = 128 #@param
|
86 |
+
num_interpol_frames = 30 #@param
|
87 |
|
88 |
+
current_image = init_images[init_image_selected]
|
89 |
+
all_frames = []
|
90 |
+
all_frames.append(current_image)
|
91 |
|
92 |
+
for i in range(num_outpainting_steps):
|
93 |
+
print('Generating image: ' + str(i+1) + ' / ' + str(num_outpainting_steps))
|
94 |
+
|
95 |
+
prev_image_fix = current_image
|
96 |
+
|
97 |
+
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
|
98 |
+
|
99 |
+
current_image = prev_image
|
100 |
+
|
101 |
+
#create mask (black image with white mask_width width edges)
|
102 |
+
mask_image = np.array(current_image)[:,:,3]
|
103 |
+
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
104 |
+
|
105 |
+
#inpainting step
|
106 |
+
current_image = current_image.convert("RGB")
|
107 |
+
images = pipe(prompt=prompt,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
image=current_image,
|
110 |
+
guidance_scale = guidance_scale,
|
111 |
+
height = height,
|
112 |
+
width = width,
|
113 |
+
#this can make the whole thing deterministic but the output less exciting
|
114 |
+
#generator = g_cuda.manual_seed(seed),
|
115 |
+
mask_image=mask_image,
|
116 |
+
num_inference_steps=num_inference_steps)[0]
|
117 |
+
current_image = images[0]
|
118 |
+
current_image.paste(prev_image, mask=prev_image)
|
119 |
+
|
120 |
+
#interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
|
121 |
+
for j in range(num_interpol_frames - 1):
|
122 |
+
interpol_image = current_image
|
123 |
+
interpol_width = round(
|
124 |
+
(1- ( 1-2*mask_width/height )**( 1-(j+1)/num_interpol_frames ) )*height/2
|
125 |
+
)
|
126 |
+
interpol_image = interpol_image.crop((interpol_width,
|
127 |
+
interpol_width,
|
128 |
+
width - interpol_width,
|
129 |
+
height - interpol_width))
|
130 |
|
131 |
+
interpol_image = interpol_image.resize((height, width))
|
132 |
|
133 |
+
#paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
|
134 |
+
interpol_width2 = round(
|
135 |
+
( 1 - (height-2*mask_width) / (height-2*interpol_width) ) / 2*height
|
136 |
+
)
|
137 |
+
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
|
138 |
+
interpol_image.paste(prev_image_fix_crop, mask = prev_image_fix_crop)
|
139 |
|
140 |
+
all_frames.append(interpol_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
all_frames.append(current_image)
|
143 |
|
144 |
+
video_file_name = "infinite_zoom_out"
|
145 |
+
fps = 30
|
146 |
+
save_path = video_file_name + ".mp4"
|
147 |
+
write_video(save_path, all_frames, fps)
|
148 |
+
return save_path
|
149 |
|
150 |
|
151 |
|
152 |
+
def app():
|
153 |
+
with gr.Blocks():
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
text2image_in_model_path = gr.Dropdown(
|
157 |
+
choices=stable_paint_model_list,
|
158 |
+
value=stable_paint_model_list[0],
|
159 |
+
label='Text-Image Model Id'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
)
|
161 |
|
162 |
+
text2image_in_prompt = gr.Textbox(
|
163 |
+
lines=1,
|
164 |
+
value=stable_paint_prompt_list[0],
|
165 |
+
label='Prompt'
|
|
|
|
|
166 |
)
|
167 |
|
168 |
+
text2image_in_negative_prompt = gr.Textbox(
|
169 |
+
lines=1,
|
170 |
+
value=stable_paint_negative_prompt_list[0],
|
171 |
+
label='Negative Prompt'
|
172 |
+
)
|
173 |
+
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
text2image_in_guidance_scale = gr.Slider(
|
177 |
+
minimum=0.1,
|
178 |
+
maximum=15,
|
179 |
+
step=0.1,
|
180 |
+
value=7.5,
|
181 |
+
label='Guidance Scale'
|
182 |
+
)
|
183 |
+
|
184 |
+
text2image_in_num_inference_step = gr.Slider(
|
185 |
+
minimum=1,
|
186 |
+
maximum=100,
|
187 |
+
step=1,
|
188 |
+
value=50,
|
189 |
+
label='Num Inference Step'
|
190 |
+
)
|
191 |
+
|
192 |
+
text2image_in_predict = gr.Button(value='Generator')
|
193 |
+
|
194 |
+
with gr.Column():
|
195 |
+
output_image = gr.Video(label='Output')
|
196 |
+
|
197 |
+
|
198 |
+
text2image_in_predict.click(
|
199 |
+
fn=StableDiffusionZoomIn().generate_video,
|
200 |
+
inputs=[
|
201 |
+
text2image_in_model_path,
|
202 |
+
text2image_in_prompt,
|
203 |
+
text2image_in_negative_prompt,
|
204 |
+
text2image_in_guidance_scale,
|
205 |
+
text2image_in_num_inference_step,
|
206 |
+
],
|
207 |
+
outputs=output_image
|
208 |
+
)
|
inpaint_zoom/app/zoom_out_app.py
CHANGED
@@ -79,7 +79,7 @@ def stable_diffusion_zoom_out_app():
|
|
79 |
)
|
80 |
|
81 |
text2image_out_prompt = gr.Textbox(
|
82 |
-
lines=
|
83 |
value=stable_paint_prompt_list[0],
|
84 |
label='Prompt'
|
85 |
)
|
@@ -89,39 +89,41 @@ def stable_diffusion_zoom_out_app():
|
|
89 |
value=stable_paint_negative_prompt_list[0],
|
90 |
label='Negative Prompt'
|
91 |
)
|
92 |
-
|
93 |
-
with gr.
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
text2image_out_predict = gr.Button(value='Generator')
|
127 |
|
|
|
79 |
)
|
80 |
|
81 |
text2image_out_prompt = gr.Textbox(
|
82 |
+
lines=2,
|
83 |
value=stable_paint_prompt_list[0],
|
84 |
label='Prompt'
|
85 |
)
|
|
|
89 |
value=stable_paint_negative_prompt_list[0],
|
90 |
label='Negative Prompt'
|
91 |
)
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
text2image_out_guidance_scale = gr.Slider(
|
96 |
+
minimum=0.1,
|
97 |
+
maximum=15,
|
98 |
+
step=0.1,
|
99 |
+
value=7.5,
|
100 |
+
label='Guidance Scale'
|
101 |
+
)
|
102 |
+
|
103 |
+
text2image_out_num_inference_step = gr.Slider(
|
104 |
+
minimum=1,
|
105 |
+
maximum=100,
|
106 |
+
step=1,
|
107 |
+
value=50,
|
108 |
+
label='Num Inference Step'
|
109 |
+
)
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
text2image_out_step_size = gr.Slider(
|
113 |
+
minimum=1,
|
114 |
+
maximum=100,
|
115 |
+
step=1,
|
116 |
+
value=10,
|
117 |
+
label='Step Size'
|
118 |
+
)
|
119 |
+
|
120 |
+
text2image_out_num_frames = gr.Slider(
|
121 |
+
minimum=1,
|
122 |
+
maximum=100,
|
123 |
+
step=1,
|
124 |
+
value=10,
|
125 |
+
label='Frames'
|
126 |
+
)
|
127 |
|
128 |
text2image_out_predict = gr.Button(value='Generator')
|
129 |
|
inpaint_zoom/zoom_out_app.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
2 |
-
from inpaint_zoom.zoom_out_utils import preprocess_image, preprocess_mask_image, write_video, dummy
|
3 |
-
from PIL import Image
|
4 |
-
import gradio as gr
|
5 |
-
import torch
|
6 |
-
import os
|
7 |
-
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
8 |
-
|
9 |
-
|
10 |
-
stable_paint_model_list = [
|
11 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
12 |
-
"runwayml/stable-diffusion-inpainting"
|
13 |
-
]
|
14 |
-
|
15 |
-
stable_paint_prompt_list = [
|
16 |
-
"Ancient underground architectural ruins of Hong Kong in a flooded apocalypse landscape of dead skyscrapers",
|
17 |
-
"A beautiful landscape of a mountain range with a lake in the foreground",
|
18 |
-
]
|
19 |
-
|
20 |
-
stable_paint_negative_prompt_list = [
|
21 |
-
"lurry, bad art, blurred, text, watermark",
|
22 |
-
]
|
23 |
-
|
24 |
-
|
25 |
-
def stable_diffusion_zoom_out(
|
26 |
-
model_id,
|
27 |
-
original_prompt,
|
28 |
-
negative_prompt,
|
29 |
-
guidance_scale,
|
30 |
-
num_inference_steps,
|
31 |
-
step_size,
|
32 |
-
num_frames,
|
33 |
-
fps,
|
34 |
-
):
|
35 |
-
|
36 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
37 |
-
pipe.set_use_memory_efficient_attention_xformers(True)
|
38 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
39 |
-
pipe = pipe.to("cuda")
|
40 |
-
pipe.safety_checker = dummy
|
41 |
-
|
42 |
-
new_image = Image.new(mode="RGBA", size=(512,512))
|
43 |
-
current_image, mask_image = preprocess_mask_image(new_image)
|
44 |
-
|
45 |
-
current_image = pipe(
|
46 |
-
prompt=[original_prompt],
|
47 |
-
negative_prompt=[negative_prompt],
|
48 |
-
image=current_image,
|
49 |
-
mask_image=mask_image,
|
50 |
-
num_inference_steps=num_inference_steps,
|
51 |
-
guidance_scale=guidance_scale
|
52 |
-
).images[0]
|
53 |
-
|
54 |
-
|
55 |
-
all_frames = []
|
56 |
-
all_frames.append(current_image)
|
57 |
-
|
58 |
-
for i in range(num_frames):
|
59 |
-
prev_image = preprocess_image(current_image, step_size, 512)
|
60 |
-
current_image = prev_image
|
61 |
-
current_image, mask_image = preprocess_mask_image(current_image)
|
62 |
-
current_image = pipe(prompt=[original_prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps).images[0]
|
63 |
-
|
64 |
-
current_image.paste(prev_image, mask=prev_image)
|
65 |
-
all_frames.append(current_image)
|
66 |
-
|
67 |
-
save_path = "output.mp4"
|
68 |
-
write_video(save_path, all_frames, fps=fps)
|
69 |
-
return save_path
|
70 |
-
|
71 |
-
|
72 |
-
def stable_diffusion_text2img_app():
|
73 |
-
with gr.Blocks():
|
74 |
-
with gr.Row():
|
75 |
-
with gr.Column():
|
76 |
-
text2image_out_model_path = gr.Dropdown(
|
77 |
-
choices=stable_paint_model_list,
|
78 |
-
value=stable_paint_model_list[0],
|
79 |
-
label='Text-Image Model Id'
|
80 |
-
)
|
81 |
-
|
82 |
-
text2image_out_prompt = gr.Textbox(
|
83 |
-
lines=1,
|
84 |
-
value=stable_paint_prompt_list[0],
|
85 |
-
label='Prompt'
|
86 |
-
)
|
87 |
-
|
88 |
-
text2image_out_negative_prompt = gr.Textbox(
|
89 |
-
lines=1,
|
90 |
-
value=stable_paint_negative_prompt_list[0],
|
91 |
-
label='Negative Prompt'
|
92 |
-
)
|
93 |
-
|
94 |
-
with gr.Accordion("Advanced Options", open=False):
|
95 |
-
text2image_out_guidance_scale = gr.Slider(
|
96 |
-
minimum=0.1,
|
97 |
-
maximum=15,
|
98 |
-
step=0.1,
|
99 |
-
value=7.5,
|
100 |
-
label='Guidance Scale'
|
101 |
-
)
|
102 |
-
|
103 |
-
text2image_out_num_inference_step = gr.Slider(
|
104 |
-
minimum=1,
|
105 |
-
maximum=100,
|
106 |
-
step=1,
|
107 |
-
value=50,
|
108 |
-
label='Num Inference Step'
|
109 |
-
)
|
110 |
-
|
111 |
-
text2image_out_step_size = gr.Slider(
|
112 |
-
minimum=1,
|
113 |
-
maximum=100,
|
114 |
-
step=1,
|
115 |
-
value=10,
|
116 |
-
label='Step Size'
|
117 |
-
)
|
118 |
-
|
119 |
-
text2image_out_num_frames = gr.Slider(
|
120 |
-
minimum=1,
|
121 |
-
maximum=100,
|
122 |
-
step=1,
|
123 |
-
value=10,
|
124 |
-
label='Frames'
|
125 |
-
)
|
126 |
-
|
127 |
-
text2image_out_fps = gr.Slider(
|
128 |
-
minimum=1,
|
129 |
-
maximum=100,
|
130 |
-
step=1,
|
131 |
-
value=30,
|
132 |
-
label='FPS'
|
133 |
-
)
|
134 |
-
|
135 |
-
text2image_out_predict = gr.Button(value='Generator')
|
136 |
-
|
137 |
-
with gr.Column():
|
138 |
-
output_image = gr.Video(label='Output')
|
139 |
-
|
140 |
-
|
141 |
-
text2image_out_predict.click(
|
142 |
-
fn=stable_diffusion_zoom_out,
|
143 |
-
inputs=[
|
144 |
-
text2image_out_model_path,
|
145 |
-
text2image_out_prompt,
|
146 |
-
text2image_out_negative_prompt,
|
147 |
-
text2image_out_guidance_scale,
|
148 |
-
text2image_out_num_inference_step,
|
149 |
-
text2image_out_step_size,
|
150 |
-
text2image_out_num_frames,
|
151 |
-
text2image_out_fps
|
152 |
-
],
|
153 |
-
outputs=output_image
|
154 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inpaint_zoom/zoom_out_utils.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
from PIL import Image
|
4 |
-
|
5 |
-
def write_video(file_path, frames, fps):
|
6 |
-
"""
|
7 |
-
Writes frames to an mp4 video file
|
8 |
-
:param file_path: Path to output video, must end with .mp4
|
9 |
-
:param frames: List of PIL.Image objects
|
10 |
-
:param fps: Desired frame rate
|
11 |
-
"""
|
12 |
-
|
13 |
-
w, h = frames[0].size
|
14 |
-
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
15 |
-
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
16 |
-
|
17 |
-
for frame in frames:
|
18 |
-
np_frame = np.array(frame.convert('RGB'))
|
19 |
-
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
20 |
-
writer.write(cv_frame)
|
21 |
-
|
22 |
-
writer.release()
|
23 |
-
|
24 |
-
|
25 |
-
def dummy(images, **kwargs):
|
26 |
-
return images, False
|
27 |
-
|
28 |
-
def preprocess_image(current_image, steps, image_size):
|
29 |
-
next_image = np.array(current_image.convert("RGBA"))*0
|
30 |
-
prev_image = current_image.resize((image_size-2*steps,image_size-2*steps))
|
31 |
-
prev_image = prev_image.convert("RGBA")
|
32 |
-
prev_image = np.array(prev_image)
|
33 |
-
next_image[:, :, 3] = 1
|
34 |
-
next_image[steps:image_size-steps,steps:image_size-steps,:] = prev_image
|
35 |
-
prev_image = Image.fromarray(next_image)
|
36 |
-
|
37 |
-
return prev_image
|
38 |
-
|
39 |
-
|
40 |
-
def preprocess_mask_image(current_image):
|
41 |
-
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
42 |
-
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
43 |
-
current_image = current_image.convert("RGB")
|
44 |
-
|
45 |
-
return current_image, mask_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
from PIL import Image
|
4 |
-
|
5 |
-
def write_video(file_path, frames, fps):
|
6 |
-
"""
|
7 |
-
Writes frames to an mp4 video file
|
8 |
-
:param file_path: Path to output video, must end with .mp4
|
9 |
-
:param frames: List of PIL.Image objects
|
10 |
-
:param fps: Desired frame rate
|
11 |
-
"""
|
12 |
-
|
13 |
-
w, h = frames[0].size
|
14 |
-
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
15 |
-
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
16 |
-
|
17 |
-
for frame in frames:
|
18 |
-
np_frame = np.array(frame.convert('RGB'))
|
19 |
-
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
20 |
-
writer.write(cv_frame)
|
21 |
-
|
22 |
-
writer.release()
|
23 |
-
|
24 |
-
|
25 |
-
def dummy(images, **kwargs):
|
26 |
-
return images, False
|
27 |
-
|
28 |
-
def preprocess_image(current_image, steps, image_size):
|
29 |
-
next_image = np.array(current_image.convert("RGBA"))*0
|
30 |
-
prev_image = current_image.resize((image_size-2*steps,image_size-2*steps))
|
31 |
-
prev_image = prev_image.convert("RGBA")
|
32 |
-
prev_image = np.array(prev_image)
|
33 |
-
next_image[:, :, 3] = 1
|
34 |
-
next_image[steps:image_size-steps,steps:image_size-steps,:] = prev_image
|
35 |
-
prev_image = Image.fromarray(next_image)
|
36 |
-
|
37 |
-
return prev_image
|
38 |
-
|
39 |
-
|
40 |
-
def preprocess_mask_image(current_image):
|
41 |
-
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
42 |
-
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
43 |
-
current_image = current_image.convert("RGB")
|
44 |
-
|
45 |
-
return current_image, mask_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|