Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- app.py +4 -4
- inpaint_zoom/app/__init__.py +0 -0
- inpaint_zoom/app/zoom_in_app.py +195 -0
- inpaint_zoom/app/zoom_out_app.py +144 -0
- inpaint_zoom/utils/__init__.py +0 -0
- inpaint_zoom/utils/zoom_in_utils.py +69 -0
- inpaint_zoom/utils/zoom_out_utils.py +45 -0
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
from inpaint_zoom.zoom_out_app import
|
2 |
-
|
3 |
|
4 |
import gradio as gr
|
5 |
|
@@ -23,8 +23,8 @@ with app:
|
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Tab('Zoom Out'):
|
26 |
-
|
27 |
with gr.Tab('Zoom In'):
|
28 |
-
|
29 |
|
30 |
app.launch(debug=True)
|
|
|
1 |
+
from inpaint_zoom.app.zoom_out_app import stable_diffusion_zoom_out_app
|
2 |
+
from inpaint_zoom.app.zoom_in_app import stable_diffusion_zoom_in_app
|
3 |
|
4 |
import gradio as gr
|
5 |
|
|
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Tab('Zoom Out'):
|
26 |
+
stable_diffusion_zoom_out_app()
|
27 |
with gr.Tab('Zoom In'):
|
28 |
+
stable_diffusion_zoom_in_app()
|
29 |
|
30 |
app.launch(debug=True)
|
inpaint_zoom/app/__init__.py
ADDED
File without changes
|
inpaint_zoom/app/zoom_in_app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inpaint_zoom.utils.zoom_in_utils import image_grid, shrink_and_paste_on_blank, dummy, write_video
|
2 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import os
|
8 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
9 |
+
|
10 |
+
|
11 |
+
stable_paint_model_list = [
|
12 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
13 |
+
"runwayml/stable-diffusion-inpainting"
|
14 |
+
]
|
15 |
+
|
16 |
+
stable_paint_prompt_list = [
|
17 |
+
"Ancient underground architectural ruins of Hong Kong in a flooded apocalypse landscape of dead skyscrapers",
|
18 |
+
"A beautiful landscape of a mountain range with a lake in the foreground",
|
19 |
+
]
|
20 |
+
|
21 |
+
stable_paint_negative_prompt_list = [
|
22 |
+
"lurry, bad art, blurred, text, watermark",
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
def stable_diffusion_zoom_in(
|
27 |
+
model_id,
|
28 |
+
prompt,
|
29 |
+
negative_prompt,
|
30 |
+
guidance_scale,
|
31 |
+
num_inference_steps,
|
32 |
+
):
|
33 |
+
|
34 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
35 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
36 |
+
pipe = pipe.to("cuda")
|
37 |
+
|
38 |
+
pipe.safety_checker = dummy
|
39 |
+
pipe.enable_attention_slicing()
|
40 |
+
g_cuda = torch.Generator(device='cuda')
|
41 |
+
|
42 |
+
num_init_images = 2
|
43 |
+
seed = 9999
|
44 |
+
height = 512
|
45 |
+
width = height
|
46 |
+
|
47 |
+
current_image = Image.new(mode="RGBA", size=(height, width))
|
48 |
+
mask_image = np.array(current_image)[:,:,3]
|
49 |
+
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
50 |
+
current_image = current_image.convert("RGB")
|
51 |
+
|
52 |
+
init_images = pipe(prompt=[prompt]*num_init_images,
|
53 |
+
negative_prompt=[negative_prompt]*num_init_images,
|
54 |
+
image=current_image,
|
55 |
+
guidance_scale = guidance_scale,
|
56 |
+
height = height,
|
57 |
+
width = width,
|
58 |
+
generator = g_cuda.manual_seed(seed),
|
59 |
+
mask_image=mask_image,
|
60 |
+
num_inference_steps=num_inference_steps)[0]
|
61 |
+
|
62 |
+
|
63 |
+
image_grid(init_images, rows=1, cols=num_init_images)
|
64 |
+
|
65 |
+
|
66 |
+
init_image_selected = 1 #@param
|
67 |
+
if num_init_images == 1:
|
68 |
+
init_image_selected = 0
|
69 |
+
else:
|
70 |
+
init_image_selected = init_image_selected - 1
|
71 |
+
|
72 |
+
num_outpainting_steps = 20 #@param
|
73 |
+
mask_width = 128 #@param
|
74 |
+
num_interpol_frames = 30 #@param
|
75 |
+
|
76 |
+
current_image = init_images[init_image_selected]
|
77 |
+
all_frames = []
|
78 |
+
all_frames.append(current_image)
|
79 |
+
|
80 |
+
for i in range(num_outpainting_steps):
|
81 |
+
print('Generating image: ' + str(i+1) + ' / ' + str(num_outpainting_steps))
|
82 |
+
|
83 |
+
prev_image_fix = current_image
|
84 |
+
|
85 |
+
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
|
86 |
+
|
87 |
+
current_image = prev_image
|
88 |
+
|
89 |
+
#create mask (black image with white mask_width width edges)
|
90 |
+
mask_image = np.array(current_image)[:,:,3]
|
91 |
+
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
92 |
+
|
93 |
+
#inpainting step
|
94 |
+
current_image = current_image.convert("RGB")
|
95 |
+
images = pipe(prompt=prompt,
|
96 |
+
negative_prompt=negative_prompt,
|
97 |
+
image=current_image,
|
98 |
+
guidance_scale = guidance_scale,
|
99 |
+
height = height,
|
100 |
+
width = width,
|
101 |
+
#this can make the whole thing deterministic but the output less exciting
|
102 |
+
#generator = g_cuda.manual_seed(seed),
|
103 |
+
mask_image=mask_image,
|
104 |
+
num_inference_steps=num_inference_steps)[0]
|
105 |
+
current_image = images[0]
|
106 |
+
current_image.paste(prev_image, mask=prev_image)
|
107 |
+
|
108 |
+
#interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
|
109 |
+
for j in range(num_interpol_frames - 1):
|
110 |
+
interpol_image = current_image
|
111 |
+
interpol_width = round(
|
112 |
+
(1- ( 1-2*mask_width/height )**( 1-(j+1)/num_interpol_frames ) )*height/2
|
113 |
+
)
|
114 |
+
interpol_image = interpol_image.crop((interpol_width,
|
115 |
+
interpol_width,
|
116 |
+
width - interpol_width,
|
117 |
+
height - interpol_width))
|
118 |
+
|
119 |
+
interpol_image = interpol_image.resize((height, width))
|
120 |
+
|
121 |
+
#paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
|
122 |
+
interpol_width2 = round(
|
123 |
+
( 1 - (height-2*mask_width) / (height-2*interpol_width) ) / 2*height
|
124 |
+
)
|
125 |
+
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
|
126 |
+
interpol_image.paste(prev_image_fix_crop, mask = prev_image_fix_crop)
|
127 |
+
|
128 |
+
all_frames.append(interpol_image)
|
129 |
+
|
130 |
+
all_frames.append(current_image)
|
131 |
+
|
132 |
+
video_file_name = "infinite_zoom_out"
|
133 |
+
fps = 30
|
134 |
+
save_path = video_file_name + ".mp4"
|
135 |
+
write_video(save_path, all_frames, fps)
|
136 |
+
return save_path
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
def stable_diffusion_zoom_in_app():
|
141 |
+
with gr.Blocks():
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
text2image_in_model_path = gr.Dropdown(
|
145 |
+
choices=stable_paint_model_list,
|
146 |
+
value=stable_paint_model_list[0],
|
147 |
+
label='Text-Image Model Id'
|
148 |
+
)
|
149 |
+
|
150 |
+
text2image_in_prompt = gr.Textbox(
|
151 |
+
lines=1,
|
152 |
+
value=stable_paint_prompt_list[0],
|
153 |
+
label='Prompt'
|
154 |
+
)
|
155 |
+
|
156 |
+
text2image_in_negative_prompt = gr.Textbox(
|
157 |
+
lines=1,
|
158 |
+
value=stable_paint_negative_prompt_list[0],
|
159 |
+
label='Negative Prompt'
|
160 |
+
)
|
161 |
+
|
162 |
+
with gr.Accordion("Advanced Options", open=False):
|
163 |
+
text2image_in_guidance_scale = gr.Slider(
|
164 |
+
minimum=0.1,
|
165 |
+
maximum=15,
|
166 |
+
step=0.1,
|
167 |
+
value=7.5,
|
168 |
+
label='Guidance Scale'
|
169 |
+
)
|
170 |
+
|
171 |
+
text2image_in_num_inference_step = gr.Slider(
|
172 |
+
minimum=1,
|
173 |
+
maximum=100,
|
174 |
+
step=1,
|
175 |
+
value=50,
|
176 |
+
label='Num Inference Step'
|
177 |
+
)
|
178 |
+
|
179 |
+
text2image_in_predict = gr.Button(value='Generator')
|
180 |
+
|
181 |
+
with gr.Column():
|
182 |
+
output_image = gr.Video(label='Output')
|
183 |
+
|
184 |
+
|
185 |
+
text2image_in_predict.click(
|
186 |
+
fn=stable_diffusion_zoom_in,
|
187 |
+
inputs=[
|
188 |
+
text2image_in_model_path,
|
189 |
+
text2image_in_prompt,
|
190 |
+
text2image_in_negative_prompt,
|
191 |
+
text2image_in_guidance_scale,
|
192 |
+
text2image_in_num_inference_step,
|
193 |
+
],
|
194 |
+
outputs=output_image
|
195 |
+
)
|
inpaint_zoom/app/zoom_out_app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
2 |
+
from inpaint_zoom.utils.zoom_out_utils import preprocess_image, preprocess_mask_image, write_video, dummy
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
8 |
+
|
9 |
+
|
10 |
+
stable_paint_model_list = [
|
11 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
12 |
+
"runwayml/stable-diffusion-inpainting"
|
13 |
+
]
|
14 |
+
|
15 |
+
stable_paint_prompt_list = [
|
16 |
+
"Ancient underground architectural ruins of Hong Kong in a flooded apocalypse landscape of dead skyscrapers",
|
17 |
+
"A beautiful landscape of a mountain range with a lake in the foreground",
|
18 |
+
]
|
19 |
+
|
20 |
+
stable_paint_negative_prompt_list = [
|
21 |
+
"lurry, bad art, blurred, text, watermark",
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
def stable_diffusion_zoom_out(
|
26 |
+
model_id,
|
27 |
+
original_prompt,
|
28 |
+
negative_prompt,
|
29 |
+
guidance_scale,
|
30 |
+
num_inference_steps,
|
31 |
+
step_size,
|
32 |
+
num_frames,
|
33 |
+
):
|
34 |
+
|
35 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
36 |
+
pipe.set_use_memory_efficient_attention_xformers(True)
|
37 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
38 |
+
pipe = pipe.to("cuda")
|
39 |
+
pipe.safety_checker = dummy
|
40 |
+
|
41 |
+
new_image = Image.new(mode="RGBA", size=(512,512))
|
42 |
+
current_image, mask_image = preprocess_mask_image(new_image)
|
43 |
+
|
44 |
+
current_image = pipe(
|
45 |
+
prompt=[original_prompt],
|
46 |
+
negative_prompt=[negative_prompt],
|
47 |
+
image=current_image,
|
48 |
+
mask_image=mask_image,
|
49 |
+
num_inference_steps=num_inference_steps,
|
50 |
+
guidance_scale=guidance_scale
|
51 |
+
).images[0]
|
52 |
+
|
53 |
+
|
54 |
+
all_frames = []
|
55 |
+
all_frames.append(current_image)
|
56 |
+
|
57 |
+
for i in range(num_frames):
|
58 |
+
prev_image = preprocess_image(current_image, step_size, 512)
|
59 |
+
current_image = prev_image
|
60 |
+
current_image, mask_image = preprocess_mask_image(current_image)
|
61 |
+
current_image = pipe(prompt=[original_prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps).images[0]
|
62 |
+
|
63 |
+
current_image.paste(prev_image, mask=prev_image)
|
64 |
+
all_frames.append(current_image)
|
65 |
+
|
66 |
+
save_path = "output.mp4"
|
67 |
+
write_video(save_path, all_frames, fps=30)
|
68 |
+
return save_path
|
69 |
+
|
70 |
+
|
71 |
+
def stable_diffusion_zoom_out_app():
|
72 |
+
with gr.Blocks():
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
text2image_out_model_path = gr.Dropdown(
|
76 |
+
choices=stable_paint_model_list,
|
77 |
+
value=stable_paint_model_list[0],
|
78 |
+
label='Text-Image Model Id'
|
79 |
+
)
|
80 |
+
|
81 |
+
text2image_out_prompt = gr.Textbox(
|
82 |
+
lines=1,
|
83 |
+
value=stable_paint_prompt_list[0],
|
84 |
+
label='Prompt'
|
85 |
+
)
|
86 |
+
|
87 |
+
text2image_out_negative_prompt = gr.Textbox(
|
88 |
+
lines=1,
|
89 |
+
value=stable_paint_negative_prompt_list[0],
|
90 |
+
label='Negative Prompt'
|
91 |
+
)
|
92 |
+
|
93 |
+
with gr.Accordion("Advanced Options", open=False):
|
94 |
+
text2image_out_guidance_scale = gr.Slider(
|
95 |
+
minimum=0.1,
|
96 |
+
maximum=15,
|
97 |
+
step=0.1,
|
98 |
+
value=7.5,
|
99 |
+
label='Guidance Scale'
|
100 |
+
)
|
101 |
+
|
102 |
+
text2image_out_num_inference_step = gr.Slider(
|
103 |
+
minimum=1,
|
104 |
+
maximum=100,
|
105 |
+
step=1,
|
106 |
+
value=50,
|
107 |
+
label='Num Inference Step'
|
108 |
+
)
|
109 |
+
|
110 |
+
text2image_out_step_size = gr.Slider(
|
111 |
+
minimum=1,
|
112 |
+
maximum=100,
|
113 |
+
step=1,
|
114 |
+
value=10,
|
115 |
+
label='Step Size'
|
116 |
+
)
|
117 |
+
|
118 |
+
text2image_out_num_frames = gr.Slider(
|
119 |
+
minimum=1,
|
120 |
+
maximum=100,
|
121 |
+
step=1,
|
122 |
+
value=10,
|
123 |
+
label='Frames'
|
124 |
+
)
|
125 |
+
|
126 |
+
text2image_out_predict = gr.Button(value='Generator')
|
127 |
+
|
128 |
+
with gr.Column():
|
129 |
+
output_image = gr.Video(label="Output Video")
|
130 |
+
|
131 |
+
|
132 |
+
text2image_out_predict.click(
|
133 |
+
fn=stable_diffusion_zoom_out,
|
134 |
+
inputs=[
|
135 |
+
text2image_out_model_path,
|
136 |
+
text2image_out_prompt,
|
137 |
+
text2image_out_negative_prompt,
|
138 |
+
text2image_out_guidance_scale,
|
139 |
+
text2image_out_num_inference_step,
|
140 |
+
text2image_out_step_size,
|
141 |
+
text2image_out_num_frames,
|
142 |
+
],
|
143 |
+
outputs=output_image
|
144 |
+
)
|
inpaint_zoom/utils/__init__.py
ADDED
File without changes
|
inpaint_zoom/utils/zoom_in_utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
6 |
+
|
7 |
+
def write_video(file_path, frames, fps, reversed = True):
|
8 |
+
"""
|
9 |
+
Writes frames to an mp4 video file
|
10 |
+
:param file_path: Path to output video, must end with .mp4
|
11 |
+
:param frames: List of PIL.Image objects
|
12 |
+
:param fps: Desired frame rate
|
13 |
+
:param reversed: if order of images to be reversed (default = True)
|
14 |
+
"""
|
15 |
+
if reversed == True:
|
16 |
+
frames.reverse()
|
17 |
+
|
18 |
+
w, h = frames[0].size
|
19 |
+
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
20 |
+
#fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
21 |
+
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
22 |
+
|
23 |
+
for frame in frames:
|
24 |
+
np_frame = np.array(frame.convert('RGB'))
|
25 |
+
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
26 |
+
writer.write(cv_frame)
|
27 |
+
|
28 |
+
writer.release()
|
29 |
+
|
30 |
+
def image_grid(imgs, rows, cols):
|
31 |
+
assert len(imgs) == rows*cols
|
32 |
+
|
33 |
+
w, h = imgs[0].size
|
34 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
35 |
+
grid_w, grid_h = grid.size
|
36 |
+
|
37 |
+
for i, img in enumerate(imgs):
|
38 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
39 |
+
return grid
|
40 |
+
|
41 |
+
def shrink_and_paste_on_blank(current_image, mask_width):
|
42 |
+
"""
|
43 |
+
Decreases size of current_image by mask_width pixels from each side,
|
44 |
+
then adds a mask_width width transparent frame,
|
45 |
+
so that the image the function returns is the same size as the input.
|
46 |
+
:param current_image: input image to transform
|
47 |
+
:param mask_width: width in pixels to shrink from each side
|
48 |
+
"""
|
49 |
+
|
50 |
+
height = current_image.height
|
51 |
+
width = current_image.width
|
52 |
+
|
53 |
+
#shrink down by mask_width
|
54 |
+
prev_image = current_image.resize((height-2*mask_width,width-2*mask_width))
|
55 |
+
prev_image = prev_image.convert("RGBA")
|
56 |
+
prev_image = np.array(prev_image)
|
57 |
+
|
58 |
+
#create blank non-transparent image
|
59 |
+
blank_image = np.array(current_image.convert("RGBA"))*0
|
60 |
+
blank_image[:,:,3] = 1
|
61 |
+
|
62 |
+
#paste shrinked onto blank
|
63 |
+
blank_image[mask_width:height-mask_width,mask_width:width-mask_width,:] = prev_image
|
64 |
+
prev_image = Image.fromarray(blank_image)
|
65 |
+
|
66 |
+
return prev_image
|
67 |
+
|
68 |
+
def dummy(images, **kwargs):
|
69 |
+
return images, False
|
inpaint_zoom/utils/zoom_out_utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def write_video(file_path, frames, fps):
|
6 |
+
"""
|
7 |
+
Writes frames to an mp4 video file
|
8 |
+
:param file_path: Path to output video, must end with .mp4
|
9 |
+
:param frames: List of PIL.Image objects
|
10 |
+
:param fps: Desired frame rate
|
11 |
+
"""
|
12 |
+
|
13 |
+
w, h = frames[0].size
|
14 |
+
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
15 |
+
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
16 |
+
|
17 |
+
for frame in frames:
|
18 |
+
np_frame = np.array(frame.convert('RGB'))
|
19 |
+
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
20 |
+
writer.write(cv_frame)
|
21 |
+
|
22 |
+
writer.release()
|
23 |
+
|
24 |
+
|
25 |
+
def dummy(images, **kwargs):
|
26 |
+
return images, False
|
27 |
+
|
28 |
+
def preprocess_image(current_image, steps, image_size):
|
29 |
+
next_image = np.array(current_image.convert("RGBA"))*0
|
30 |
+
prev_image = current_image.resize((image_size-2*steps,image_size-2*steps))
|
31 |
+
prev_image = prev_image.convert("RGBA")
|
32 |
+
prev_image = np.array(prev_image)
|
33 |
+
next_image[:, :, 3] = 1
|
34 |
+
next_image[steps:image_size-steps,steps:image_size-steps,:] = prev_image
|
35 |
+
prev_image = Image.fromarray(next_image)
|
36 |
+
|
37 |
+
return prev_image
|
38 |
+
|
39 |
+
|
40 |
+
def preprocess_mask_image(current_image):
|
41 |
+
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
42 |
+
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
43 |
+
current_image = current_image.convert("RGB")
|
44 |
+
|
45 |
+
return current_image, mask_image
|