kadirnar commited on
Commit
1a7b771
·
1 Parent(s): 643db09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -7,6 +7,7 @@ os.environ["CUDA_VISIBLE_DEVICES"]="0"
7
  import torch
8
  import gradio as gr
9
 
 
10
  orig_prompt = "Create a relaxing atmosphere with the use of plants and other natural elements. Such as a hanging terrarium or a wall-mounted planter. Include plenty of storage options to keep the space organized and clutter-free. Consider adding a vanity with double sinks and plenty of drawers and cabinets. As well as a wall mounted medicine and towel storage."
11
  orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
12
 
@@ -14,18 +15,18 @@ def stable_diffusion_zoom_out(
14
  repo_id,
15
  original_prompt,
16
  negative_prompt,
17
- steps=32,
18
- num_frames=10,
19
- image_size=512,
20
- fps=16
21
  ):
 
22
  pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
23
  pipe.set_use_memory_efficient_attention_xformers(True)
24
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
25
  pipe = pipe.to("cuda")
26
  pipe.safety_checker = dummy
27
 
28
- current_image = Image.new(mode="RGBA", size=(image_size,image_size))
29
  mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
30
  mask_image = Image.fromarray(255-mask_image).convert("RGB")
31
  current_image = current_image.convert("RGB")
@@ -42,11 +43,11 @@ def stable_diffusion_zoom_out(
42
 
43
  for i in range(num_frames):
44
  next_image = np.array(current_image.convert("RGBA"))*0
45
- prev_image = current_image.resize((image_size-2*steps,image_size-2*steps))
46
  prev_image = prev_image.convert("RGBA")
47
  prev_image = np.array(prev_image)
48
  next_image[:, :, 3] = 1
49
- next_image[steps:image_size-steps,steps:image_size-steps,:] = prev_image
50
  prev_image = Image.fromarray(next_image)
51
  current_image = prev_image
52
  mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
@@ -61,19 +62,20 @@ def stable_diffusion_zoom_out(
61
  write_video(save_path, all_frames, fps=fps)
62
  return save_path
63
 
 
64
  inputs = [
65
- gr.inputs.Textbox(lines=1, default="stabilityai/stable-diffusion-2-inpainting", label="Model"),
66
  gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"),
67
  gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
68
  gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"),
69
  gr.inputs.Slider(minimum=1, maximum=500, default=10, step=10, label="Frames"),
70
- gr.inputs.Slider(minimum=128, maximum=1024, default=512, step=32, label="Image Size"),
71
  gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS")
72
  ]
73
 
74
  output = gr.outputs.Video()
75
  examples = [
76
- ["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt, 32, 10, 512, 16]]
 
77
 
78
  title = "Stable Diffusion Infinite Zoom Out"
79
 
 
7
  import torch
8
  import gradio as gr
9
 
10
+
11
  orig_prompt = "Create a relaxing atmosphere with the use of plants and other natural elements. Such as a hanging terrarium or a wall-mounted planter. Include plenty of storage options to keep the space organized and clutter-free. Consider adding a vanity with double sinks and plenty of drawers and cabinets. As well as a wall mounted medicine and towel storage."
12
  orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
13
 
 
15
  repo_id,
16
  original_prompt,
17
  negative_prompt,
18
+ steps,
19
+ num_frames,
20
+ fps
 
21
  ):
22
+
23
  pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
24
  pipe.set_use_memory_efficient_attention_xformers(True)
25
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
26
  pipe = pipe.to("cuda")
27
  pipe.safety_checker = dummy
28
 
29
+ current_image = Image.new(mode="RGBA", size=(512,512))
30
  mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
31
  mask_image = Image.fromarray(255-mask_image).convert("RGB")
32
  current_image = current_image.convert("RGB")
 
43
 
44
  for i in range(num_frames):
45
  next_image = np.array(current_image.convert("RGBA"))*0
46
+ prev_image = current_image.resize((512-2*steps,512-2*steps))
47
  prev_image = prev_image.convert("RGBA")
48
  prev_image = np.array(prev_image)
49
  next_image[:, :, 3] = 1
50
+ next_image[steps:512-steps,steps:512-steps,:] = prev_image
51
  prev_image = Image.fromarray(next_image)
52
  current_image = prev_image
53
  mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
 
62
  write_video(save_path, all_frames, fps=fps)
63
  return save_path
64
 
65
+
66
  inputs = [
67
+ gr.inputs.Textbox(lines=1, default="stabilityai/stable-diffusion-2-inpainting", label="Model ID"),
68
  gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"),
69
  gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
70
  gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"),
71
  gr.inputs.Slider(minimum=1, maximum=500, default=10, step=10, label="Frames"),
 
72
  gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS")
73
  ]
74
 
75
  output = gr.outputs.Video()
76
  examples = [
77
+ ["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt, 32, 50, 16]
78
+ ]
79
 
80
  title = "Stable Diffusion Infinite Zoom Out"
81