Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import AuraFlowPipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Initialize the AuraFlow v0.3 pipeline | |
pipe = AuraFlowPipeline.from_pretrained( | |
"fal/AuraFlow-v0.3", | |
torch_dtype=torch.float16 | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, | |
negative_prompt="", | |
seed=42, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=5.0, | |
num_inference_steps=28, | |
progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator | |
).images[0] | |
return image, seed | |
with gr.Blocks(theme="bethecloud/storj_theme") as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
AuraFlow v0.3 | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
Follow me for more! | |
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a> | |
</h3> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt") | |
negative_prompt = gr.Text(label="Negative prompt", placeholder="Enter a negative prompt") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0) | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28) | |
run_button = gr.Button("Generate") | |
with gr.Column(scale=1): | |
result = gr.Image(label="Generated Image") | |
seed_output = gr.Number(label="Seed used") | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed_output] | |
) | |
gr.Examples( | |
examples=[ | |
"A photo of a lavender cat", | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
], | |
inputs=prompt, | |
) | |
demo.queue().launch(server_name="0.0.0.0", share=False) | |