Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import importlib | |
import datasets | |
import evaluate | |
_CITATION = """\ | |
@misc{ren2020codebleu, | |
title={CodeBLEU: a Method for Automatic Evaluation of Code Synthesis}, | |
author={Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie Liu and Duyu Tang and Neel Sundaresan and Ming Zhou and Ambrosio Blanco and Shuai Ma}, | |
year={2020}, | |
eprint={2009.10297}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.SE} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Unofficial `CodeBLEU` implementation that supports Linux and MacOS. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculate a weighted combination of `n-gram match (BLEU)`, `weighted n-gram match (BLEU-weighted)`, `AST match` and `data-flow match` scores. | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
language: programming language in ['java','js','c_sharp','php','c','python','cpp']. | |
weights: tuple of 4 floats to use as weights for scores. Defaults to (0.25, 0.25, 0.25, 0.25). | |
Returns: | |
codebleu: resulting `CodeBLEU` score, | |
ngram_match_score: resulting `n-gram match (BLEU)` score, | |
weighted_ngram_match_score: resulting `weighted n-gram match (BLEU-weighted)` score, | |
syntax_match_score: resulting `AST match` score, | |
dataflow_match_score: resulting `data-flow match` score, | |
Examples: | |
>>> metric = evaluate.load("k4black/codebleu") | |
>>> ref = "def sum ( first , second ) :\n return second + first" | |
>>> pred = "def add ( a , b ) :\n return a + b" | |
>>> results = metric.compute(references=[ref], predictions=[pred], language="python") | |
>>> print(results) | |
""" | |
class codebleu(evaluate.Metric): | |
"""CodeBLEU metric from CodexGLUE""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=[ | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), | |
"lang": datasets.Value("string"), | |
# "weights": datasets.Value("string"), | |
# "tokenizer": datasets.Value("string"), | |
} | |
), | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
"lang": datasets.Value("string"), | |
# "weights": datasets.Value("string"), | |
# "tokenizer": datasets.Value("string"), | |
} | |
), | |
], | |
# Homepage of the module for documentation | |
homepage="https://github.com/k4black/codebleu", | |
# Additional links to the codebase or references | |
codebase_urls=["https://github.com/k4black/codebleu"], | |
reference_urls=[ | |
"https://github.com/k4black/codebleu", | |
"https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator", | |
"https://arxiv.org/abs/2009.10297", | |
], | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# workarounds as this file have to be named codebleu (evaluate library requirement) | |
self.codebleu_package = importlib.import_module('codebleu') | |
pass | |
def _compute(self, predictions, references, lang, weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None): | |
"""Returns the scores""" | |
return self.codebleu_package.calc_codebleu( | |
references=references, | |
predictions=predictions, | |
lang=lang, | |
weights=weights, | |
tokenizer=tokenizer, | |
) | |