Spaces:
Running
Running
File size: 17,962 Bytes
631fbda 3f10ec6 631fbda 01e6032 3f10ec6 eef56bc 106f5b9 4ceb2fd 4c2791d 4af6b14 631fbda 4af6b14 631fbda 3f10ec6 631fbda 268d9a1 631fbda 3f10ec6 631fbda 3f10ec6 631fbda 3f10ec6 631fbda 106f5b9 631fbda 106f5b9 268d9a1 106f5b9 268d9a1 631fbda acb363b 8e6b559 acb363b 3f10ec6 631fbda 4af6b14 631fbda 4af6b14 8e6b559 631fbda 4af6b14 8e6b559 631fbda 01e6032 631fbda 4af6b14 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 01e6032 631fbda 3f10ec6 631fbda 4af6b14 631fbda 4af6b14 631fbda 3f10ec6 631fbda 3f10ec6 631fbda 4af6b14 3f10ec6 4af6b14 631fbda 3f10ec6 631fbda acb363b 631fbda 3f10ec6 631fbda 4af6b14 631fbda 8e6b559 631fbda 4af6b14 631fbda 01e6032 4ceb2fd 4c2791d 631fbda 8b0b34b 631fbda 01e6032 4af6b14 631fbda 01e6032 4af6b14 631fbda 4af6b14 631fbda 01e6032 631fbda 01e6032 3f10ec6 268d9a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import gradio as gr
from functools import lru_cache
import random
import requests
import logging
import config
import plotly.graph_objects as go
from typing import Dict
from leaderboard import (
get_current_leaderboard,
update_leaderboard,
start_backup_thread,
get_leaderboard,
get_elo_leaderboard,
ensure_elo_ratings_initialized
)
import sys
import openai
import threading
import time
from collections import Counter
from model_suggestions import add_suggestion, get_suggestions_html
from release_notes import get_release_notes_html
# Initialize logging for errors only
logging.basicConfig(level=logging.ERROR)
logger = logging.getLogger(__name__)
# Start the backup thread
start_backup_thread()
# Function to get available models (using predefined list)
def get_available_models():
return [model[0] for model in config.get_approved_models()]
# Function to get recent opponents for a model
recent_opponents = {}
def update_recent_opponents(model_a, model_b):
recent_opponents.setdefault(model_a, []).append(model_b)
recent_opponents.setdefault(model_b, []).append(model_a)
# Limit history to last 5 opponents
recent_opponents[model_a] = recent_opponents[model_a][-5:]
recent_opponents[model_b] = recent_opponents[model_b][-5:]
# Function to call Ollama API with caching
@lru_cache(maxsize=100)
def call_ollama_api(model, prompt):
client = openai.OpenAI(
api_key=config.API_KEY,
base_url=config.API_URL
)
try:
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "You are a helpful assistant. At no point should you reveal your name, identity or team affiliation to the user, especially if asked directly!"
},
{
"role": "user",
"content": prompt
}
],
timeout=100
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error calling Ollama API for model {model}: {e}")
return f"Error: Unable to get response from the model."
# Generate responses using two randomly selected models
def get_battle_counts():
leaderboard = get_current_leaderboard()
battle_counts = Counter()
for model, data in leaderboard.items():
battle_counts[model] = data['wins'] + data['losses']
return battle_counts
def generate_responses(prompt):
available_models = get_available_models()
if len(available_models) < 2:
return "Error: Not enough models available", "Error: Not enough models available", None, None
battle_counts = get_battle_counts()
# Sort models by battle count (ascending)
sorted_models = sorted(available_models, key=lambda m: battle_counts.get(m, 0))
# Select the first model (least battles)
model_a = sorted_models[0]
# Filter out recent opponents for model_a
potential_opponents = [m for m in sorted_models[1:] if m not in recent_opponents.get(model_a, [])]
# If no potential opponents left, reset recent opponents for model_a
if not potential_opponents:
recent_opponents[model_a] = []
potential_opponents = sorted_models[1:]
# For the second model, use weighted random selection
weights = [1 / (battle_counts.get(m, 1) + 1) for m in potential_opponents]
model_b = random.choices(potential_opponents, weights=weights, k=1)[0]
# Update recent opponents
update_recent_opponents(model_a, model_b)
model_a_response = call_ollama_api(model_a, prompt)
model_b_response = call_ollama_api(model_b, prompt)
return model_a_response, model_b_response, model_a, model_b
def battle_arena(prompt):
response_a, response_b, model_a, model_b = generate_responses(prompt)
# Check for API errors in responses
if "Error: Unable to get response from the model" in response_a or "Error: Unable to get response from the model" in response_b:
return (
[], [], None, None,
gr.update(value=[]),
gr.update(value=[]),
gr.update(interactive=False, value="Voting Disabled - API Error"),
gr.update(interactive=False, value="Voting Disabled - API Error"),
gr.update(interactive=False, visible=False),
prompt,
0,
gr.update(visible=False),
gr.update(value="Error: Unable to get response from the model", visible=True)
)
nickname_a = random.choice(config.model_nicknames)
nickname_b = random.choice(config.model_nicknames)
# Format responses for gr.Chatbot, including the user's prompt
response_a_formatted = [
{"role": "user", "content": prompt},
{"role": "assistant", "content": response_a}
]
response_b_formatted = [
{"role": "user", "content": prompt},
{"role": "assistant", "content": response_b}
]
if random.choice([True, False]):
return (
response_a_formatted, response_b_formatted, model_a, model_b,
gr.update(label=nickname_a, value=response_a_formatted),
gr.update(label=nickname_b, value=response_b_formatted),
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
gr.update(interactive=True, visible=True),
prompt,
0,
gr.update(visible=False),
gr.update(value="Ready for your vote! π³οΈ", visible=True)
)
else:
return (
response_b_formatted, response_a_formatted, model_b, model_a,
gr.update(label=nickname_a, value=response_b_formatted),
gr.update(label=nickname_b, value=response_a_formatted),
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
gr.update(interactive=True, visible=True),
prompt,
0,
gr.update(visible=False),
gr.update(value="Ready for your vote! π³οΈ", visible=True)
)
def record_vote(prompt, left_response, right_response, left_model, right_model, choice):
# Check if outputs are generated
if not left_response or not right_response or not left_model or not right_model:
return (
"Please generate responses before voting.",
gr.update(),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
gr.update()
)
winner = left_model if choice == "Left is better" else right_model
loser = right_model if choice == "Left is better" else left_model
# Update the leaderboard
battle_results = update_leaderboard(winner, loser)
result_message = f"""
π Vote recorded! You're awesome! π
π΅ In the left corner: {get_human_readable_name(left_model)}
π΄ In the right corner: {get_human_readable_name(right_model)}
π And the champion you picked is... {get_human_readable_name(winner)}! π₯
"""
return (
gr.update(value=result_message, visible=True), # Show result as Markdown
get_leaderboard(), # Update leaderboard
get_elo_leaderboard(), # Add this line
gr.update(interactive=False), # Disable left vote button
gr.update(interactive=False), # Disable right vote button
gr.update(interactive=False), # Disable tie button
gr.update(visible=True), # Show model names
get_leaderboard_chart() # Update leaderboard chart
)
def get_leaderboard_chart():
battle_results = get_current_leaderboard()
# Calculate scores and sort results
for model, results in battle_results.items():
total_battles = results["wins"] + results["losses"]
if total_battles > 0:
win_rate = results["wins"] / total_battles
results["score"] = win_rate * (1 - 1 / (total_battles + 1))
else:
results["score"] = 0
sorted_results = sorted(
battle_results.items(),
key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]),
reverse=True
)
models = [get_human_readable_name(model) for model, _ in sorted_results]
wins = [results["wins"] for _, results in sorted_results]
losses = [results["losses"] for _, results in sorted_results]
scores = [results["score"] for _, results in sorted_results]
fig = go.Figure()
# Stacked Bar chart for Wins and Losses
fig.add_trace(go.Bar(
x=models,
y=wins,
name='Wins',
marker_color='#22577a'
))
fig.add_trace(go.Bar(
x=models,
y=losses,
name='Losses',
marker_color='#38a3a5'
))
# Line chart for Scores
fig.add_trace(go.Scatter(
x=models,
y=scores,
name='Score',
yaxis='y2',
line=dict(color='#ff7f0e', width=2)
))
# Update layout for full-width, increased height, and secondary y-axis
fig.update_layout(
title='Model Performance',
xaxis_title='Models',
yaxis_title='Number of Battles',
yaxis2=dict(
title='Score',
overlaying='y',
side='right'
),
barmode='stack',
height=800,
width=1450,
autosize=True,
legend=dict(
orientation='h',
yanchor='bottom',
y=1.02,
xanchor='right',
x=1
)
)
chart_data = fig.to_json()
return fig
def new_battle():
nickname_a = random.choice(config.model_nicknames)
nickname_b = random.choice(config.model_nicknames)
return (
"", # Reset prompt_input
gr.update(value=[], label=nickname_a), # Reset left Chatbot
gr.update(value=[], label=nickname_b), # Reset right Chatbot
None,
None,
gr.update(interactive=False, value=f"Vote for {nickname_a}"),
gr.update(interactive=False, value=f"Vote for {nickname_b}"),
gr.update(interactive=False, visible=False), # Reset Tie button
gr.update(value="", visible=False),
gr.update(),
gr.update(visible=False),
gr.update(),
0 # Reset tie_count
)
# Add this new function
def get_human_readable_name(model_name: str) -> str:
model_dict = dict(config.get_approved_models())
return model_dict.get(model_name, model_name)
# Add this new function to randomly select a prompt
def random_prompt():
return random.choice(config.example_prompts)
# Modify the continue_conversation function
def continue_conversation(prompt, left_chat, right_chat, left_model, right_model, previous_prompt, tie_count):
# Check if the prompt is empty or the same as the previous one
if not prompt or prompt == previous_prompt:
prompt = random.choice(config.example_prompts)
left_response = call_ollama_api(left_model, prompt)
right_response = call_ollama_api(right_model, prompt)
left_chat.append({"role": "user", "content": prompt})
left_chat.append({"role": "assistant", "content": left_response})
right_chat.append({"role": "user", "content": prompt})
right_chat.append({"role": "assistant", "content": right_response})
tie_count += 1
tie_button_state = gr.update(interactive=True) if tie_count < 3 else gr.update(interactive=False, value="Max ties reached. Please vote!")
return (
gr.update(value=left_chat),
gr.update(value=right_chat),
gr.update(value=""), # Clear the prompt input
tie_button_state,
prompt, # Return the new prompt
tie_count
)
# Initialize Gradio Blocks
with gr.Blocks(css="""
#dice-button {
min-height: 90px;
font-size: 35px;
}
""") as demo:
gr.Markdown(config.ARENA_NAME)
gr.Markdown(config.ARENA_DESCRIPTION)
# Leaderboard Tab (now first)
with gr.Tab("Leaderboard"):
leaderboard = gr.HTML(label="Leaderboard")
# Battle Arena Tab (now second)
with gr.Tab("Battle Arena"):
with gr.Row():
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Type your prompt here...",
scale=20
)
random_prompt_btn = gr.Button("π²", scale=1, elem_id="dice-button")
gr.Markdown("<br>")
# Add the random prompt button functionality
random_prompt_btn.click(
random_prompt,
outputs=prompt_input
)
submit_btn = gr.Button("Generate Responses", variant="primary")
with gr.Row():
left_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
right_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
with gr.Row():
left_vote_btn = gr.Button(f"Vote for {left_output.label}", interactive=False)
tie_btn = gr.Button("Tie π Continue with a new prompt", interactive=False, visible=False)
right_vote_btn = gr.Button(f"Vote for {right_output.label}", interactive=False)
result = gr.Textbox(
label="Status",
interactive=False,
value="Generate responses to start the battle! π",
visible=True # Always visible
)
with gr.Row(visible=False) as model_names_row:
left_model = gr.Textbox(label="π΅ Left Model", interactive=False)
right_model = gr.Textbox(label="π΄ Right Model", interactive=False)
previous_prompt = gr.State("") # Add this line to store the previous prompt
tie_count = gr.State(0) # Add this line to keep track of tie count
new_battle_btn = gr.Button("New Battle")
# Performance Chart Tab
with gr.Tab("Performance Chart"):
leaderboard_chart = gr.Plot(label="Model Performance Chart")
# ELO Leaderboard Tab
with gr.Tab("ELO Leaderboard"):
elo_leaderboard = gr.HTML(label="ELO Leaderboard")
# Add this new tab
with gr.Tab("Suggest Models"):
with gr.Row():
model_url_input = gr.Textbox(
label="Model URL",
placeholder="hf.co/username/model-name-GGUF:Q4_K_M",
scale=4
)
submit_suggestion_btn = gr.Button("Submit Suggestion", scale=1, variant="primary")
suggestion_status = gr.Markdown("Submit a model to see it listed below!")
suggestions_list = gr.HTML(get_suggestions_html())
refresh_suggestions_btn = gr.Button("Refresh List")
# Update button click handlers
submit_suggestion_btn.click(
add_suggestion,
inputs=[model_url_input],
outputs=[suggestion_status]
).then(
lambda: (
get_suggestions_html(), # Update suggestions list
"" # Clear model URL input
),
outputs=[
suggestions_list,
model_url_input
]
)
refresh_suggestions_btn.click(
get_suggestions_html,
outputs=[suggestions_list]
)
# Add this new tab
with gr.Tab("Latest Updates"):
release_notes = gr.HTML(get_release_notes_html())
refresh_notes_btn = gr.Button("Refresh Updates")
refresh_notes_btn.click(
get_release_notes_html,
outputs=[release_notes]
)
# Define interactions
submit_btn.click(
battle_arena,
inputs=prompt_input,
outputs=[
left_output, right_output, left_model, right_model,
left_output, right_output, left_vote_btn, right_vote_btn,
tie_btn, previous_prompt, tie_count, model_names_row, result
]
)
left_vote_btn.click(
lambda *args: record_vote(*args, "Left is better"),
inputs=[prompt_input, left_output, right_output, left_model, right_model],
outputs=[result, leaderboard, elo_leaderboard, left_vote_btn,
right_vote_btn, tie_btn, model_names_row, leaderboard_chart]
)
right_vote_btn.click(
lambda *args: record_vote(*args, "Right is better"),
inputs=[prompt_input, left_output, right_output, left_model, right_model],
outputs=[result, leaderboard, elo_leaderboard, left_vote_btn,
right_vote_btn, tie_btn, model_names_row, leaderboard_chart]
)
tie_btn.click(
continue_conversation,
inputs=[prompt_input, left_output, right_output, left_model, right_model, previous_prompt, tie_count],
outputs=[left_output, right_output, prompt_input, tie_btn, previous_prompt, tie_count]
)
new_battle_btn.click(
new_battle,
outputs=[prompt_input, left_output, right_output, left_model,
right_model, left_vote_btn, right_vote_btn, tie_btn,
result, leaderboard, model_names_row, leaderboard_chart, tie_count]
)
# Update leaderboard and chart on launch
demo.load(get_leaderboard, outputs=leaderboard)
demo.load(get_elo_leaderboard, outputs=elo_leaderboard)
demo.load(get_leaderboard_chart, outputs=leaderboard_chart)
if __name__ == "__main__":
# Initialize ELO ratings before launching the app
ensure_elo_ratings_initialized()
# Start the model refresh thread
config.start_model_refresh_thread()
demo.launch(show_api=False) |