Spaces:
Running
Running
import torch | |
import lightning | |
from pydantic import BaseModel | |
class FFNModule(torch.nn.Module): | |
""" | |
A pytorch module that regresses from a hidden state representation of a word | |
to its continuous linguistic feature norm vector. | |
It is a FFN with the general structure of: | |
input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int, | |
hidden_size: int, | |
num_layers: int, | |
dropout: float, | |
): | |
super(FFNModule, self).__init__() | |
layers = [] | |
for _ in range(num_layers - 1): | |
layers.append(torch.nn.Linear(input_size, hidden_size)) | |
layers.append(torch.nn.ReLU()) | |
layers.append(torch.nn.Dropout(dropout)) | |
# changes input size to hidden size after first layer | |
input_size = hidden_size | |
layers.append(torch.nn.Linear(hidden_size, output_size)) | |
self.network = torch.nn.Sequential(*layers) | |
def forward(self, x): | |
return self.network(x) | |
class FFNParams(BaseModel): | |
input_size: int | |
output_size: int | |
hidden_size: int | |
num_layers: int | |
dropout: float | |
class TrainingParams(BaseModel): | |
num_epochs: int | |
batch_size: int | |
learning_rate: float | |
weight_decay: float | |
class FeatureNormPredictor(lightning.LightningModule): | |
def __init__(self, ffn_params : FFNParams, training_params : TrainingParams): | |
super().__init__() | |
self.save_hyperparameters() | |
self.ffn_params = ffn_params | |
self.training_params = training_params | |
self.model = FFNModule(**ffn_params.model_dump()) | |
self.loss_function = torch.nn.MSELoss() | |
self.training_params = training_params | |
def training_step(self, batch, batch_idx): | |
x,y = batch | |
outputs = self.model(x) | |
loss = self.loss_function(outputs, y) | |
self.log("train_loss", loss) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
x,y = batch | |
outputs = self.model(x) | |
loss = self.loss_function(outputs, y) | |
self.log("val_loss", loss, on_epoch=True, prog_bar=True) | |
return loss | |
def test_step(self, batch, batch_idx): | |
return self.model(batch) | |
def predict(self, batch): | |
return self.model(batch) | |
def __call__(self, input): | |
return self.model(input) | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam( | |
self.parameters(), | |
lr=self.training_params.learning_rate, | |
weight_decay=self.training_params.weight_decay, | |
) | |
return optimizer | |
def save_model(self, path: str): | |
torch.save(self.model.state_dict(), path) | |
def load_model(self, path: str): | |
self.model.load_state_dict(torch.load(path)) | |