#Importing all the necessary packages import nltk import librosa import torch import gradio as gr from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC nltk.download("punkt") #Loading the pre-trained model and the tokenizer model_name = "facebook/wav2vec2-base-960h" tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) def load_data(input_file): #reading the file speech, sample_rate = librosa.load(input_file) #make it 1-D if len(speech.shape) > 1: speech = speech[:,0] + speech[:,1] #Resampling the audio at 16KHz if sample_rate !=16000: speech = librosa.resample(speech, sample_rate,16000) return speech def correct_casing(input_sentence): sentences = nltk.sent_tokenize(input_sentence) return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) def asr_transcript(input_file): speech = load_data(input_file) #Tokenize input_values = tokenizer(speech, return_tensors="pt").input_values #Take logits logits = model(input_values).logits #Take argmax predicted_ids = torch.argmax(logits, dim=-1) #Get the words from predicted word ids transcription = tokenizer.decode(predicted_ids[0]) #Correcting the letter casing transcription = correct_casing(transcription.lower()) return transcription