Spaces:
Sleeping
Sleeping
# Importing all the necessary packages | |
import nltk | |
import torch | |
import gradio as gr | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
import numpy as np | |
# Downloading the necessary NLTK data | |
nltk.download("punkt") | |
# Loading the pre-trained model and the processor | |
model_name = "facebook/wav2vec2-base-960h" | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def correct_casing(input_sentence): | |
sentences = nltk.sent_tokenize(input_sentence) | |
return ' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]) | |
def asr_transcript(audio): | |
if audio is None or len(audio) == 0: | |
return "" | |
# Ensure audio is a 1D numpy array | |
if isinstance(audio, list): | |
audio = np.array(audio) | |
if audio.ndim > 1: | |
audio = audio.flatten() | |
# Process the audio | |
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values | |
# Get logits | |
logits = model(input_values).logits | |
# Get predicted IDs | |
predicted_ids = torch.argmax(logits, dim=-1) | |
# Decode the IDs to text | |
transcription = processor.decode(predicted_ids[0]) | |
# Correct the casing | |
transcription = correct_casing(transcription.lower()) | |
return transcription | |
def real_time_asr(audio, state=""): | |
try: | |
if isinstance(audio, dict) and 'array' in audio: | |
audio = audio['array'] | |
transcription = asr_transcript(audio) | |
state += " " + transcription | |
return state, state | |
except Exception as e: | |
return str(e), state | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=real_time_asr, | |
inputs=[gr.Audio(streaming=True), gr.State()], | |
outputs=[gr.Textbox(), gr.State()], | |
live=True, | |
title="Real-Time ASR using Wav2Vec 2.0", | |
description="This application displays transcribed text in real-time for given audio input" | |
) | |
# Launch the interface | |
iface.launch() | |