Spaces:
Sleeping
Sleeping
#Importing all the necessary packages | |
import nltk | |
import librosa | |
import torch | |
import gradio as gr | |
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC | |
nltk.download("punkt") | |
#Loading the pre-trained model and the tokenizer | |
model_name = "facebook/wav2vec2-base-960h" | |
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def load_data(input_file): | |
#reading the file | |
speech, sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#Resampling the audio at 16KHz | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
return speech | |
def correct_casing(input_sentence): | |
sentences = nltk.sent_tokenize(input_sentence) | |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
def asr_transcript(input_file): | |
speech = load_data(input_file) | |
#Tokenize | |
input_values = tokenizer(speech, return_tensors="pt").input_values | |
#Take logits | |
logits = model(input_values).logits | |
#Take argmax | |
predicted_ids = torch.argmax(logits, dim=-1) | |
#Get the words from predicted word ids | |
transcription = tokenizer.decode(predicted_ids[0]) | |
#Correcting the letter casing | |
transcription = correct_casing(transcription.lower()) | |
return transcription | |