juliuserictuliao
commited on
fix bug
Browse files
app.py
CHANGED
@@ -5,39 +5,28 @@ from datasets import load_dataset
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
-
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
#
|
15 |
-
processor = SpeechT5Processor.from_pretrained("
|
16 |
-
|
17 |
-
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
-
|
23 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("facebook/mms-tts-tgl")
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
def translate(audio):
|
29 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
30 |
-
print(outputs["text"])
|
31 |
return outputs["text"]
|
32 |
|
33 |
-
|
34 |
def synthesise(text):
|
35 |
inputs = processor(text=text, return_tensors="pt")
|
36 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings
|
37 |
return speech.cpu()
|
38 |
|
39 |
-
|
40 |
-
|
41 |
def speech_to_speech_translation(audio):
|
42 |
translated_text = translate(audio)
|
43 |
synthesised_speech = synthesise(translated_text)
|
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
|
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# Load speech translation checkpoint
|
11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
12 |
|
13 |
+
# Load text-to-speech checkpoint and speaker embeddings
|
14 |
+
processor = SpeechT5Processor.from_pretrained("facebook/mms-tts-spa")
|
15 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("facebook/mms-tts-spa").to(device)
|
|
|
16 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
17 |
|
18 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
19 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def translate(audio):
|
22 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"})
|
|
|
23 |
return outputs["text"]
|
24 |
|
|
|
25 |
def synthesise(text):
|
26 |
inputs = processor(text=text, return_tensors="pt")
|
27 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings, vocoder=vocoder)
|
28 |
return speech.cpu()
|
29 |
|
|
|
|
|
30 |
def speech_to_speech_translation(audio):
|
31 |
translated_text = translate(audio)
|
32 |
synthesised_speech = synthesise(translated_text)
|