File size: 3,035 Bytes
4938fc2
df4c9ba
f4ecb39
1589ac0
4938fc2
 
c530b86
 
 
f4ecb39
 
 
 
4938fc2
c530b86
4938fc2
7b22434
df4c9ba
c530b86
df4c9ba
4938fc2
c530b86
 
 
 
 
df4c9ba
c530b86
df4c9ba
4938fc2
c530b86
df4c9ba
4938fc2
 
 
 
c530b86
4938fc2
 
c530b86
1185541
4938fc2
1589ac0
4938fc2
 
 
 
c530b86
 
4d18ff9
93bba02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d18ff9
4938fc2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
import time
from optimum.intel.openvino import OVModelForSequenceClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

model_id = "juliensimon/xlm-v-base-language-id"

p = pipeline("text-classification", model=model_id)

ov_model = OVModelForSequenceClassification.from_pretrained(
    model_id, from_transformers=True
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

ov_p = pipeline("text-classification", model=ov_model, tokenizer=tokenizer)

# Warmup
for i in range(100):
    ov_p("Hello world")


def process(text, model, top_k=5):
    if model == "Vanilla":
        pipe = p
    else:
        pipe = ov_p
    tick = time.time()
    pred = pipe(text, top_k=top_k)
    tock = time.time()
    scores = {x["label"]: x["score"] for x in pred}
    msg = f"{(tock-tick)*1000:.2f} milliseconds"
    return scores, msg


# Gradio inputs
input_text = gr.Text(label="Enter text")
input_model = gr.Radio(label="Pick a model", choices=["Vanilla", "OpenVINO"])

# Gradio outputs
output_labels = gr.Label(label="Languages", num_top_classes=5)
output_text = gr.Text(label="Prediction time")

description = "This Space lets you perform language identification on the 102 languages present in the google/fleurs dataset. The underlying model scores 99.3% accuracy on the validation set. Inference is optimized with Optimum Intel and OpenVINO."

iface = gr.Interface(
    description=description,
    fn=process,
    inputs=[input_text, input_model],
    outputs=[output_labels, output_text],
    examples=[
        [
            "Kila mtu ana haki ya kuelimishwa. Elimu yapasa itolewe bure hasa ile ya madarasa ya chini. Elimu ya masarasa ya chini ihudhuriwe kwa lazima. Elimu ya ufundi na ustadi iwe wazi kwa wote. Na elimu ya juu iwe wazi kwa wote kwa kutegemea sifa ya mtu",
            "OpenVINO",
        ],
        [
            "Ang bawat tao'y may karapatan sa edukasyon. Ang edukasyon ay walang bayad, doon man lamang sa elementarya at pangunahing antas. Ang edukasyong elementarya ay magiging sapilitan. Ang edukasyong teknikal at propesyonal ay gagawing maabot ng lahat at ang lalong mataas na edukasyon ay ipagkakaloob nang pantay-pantay sa lahat batay sa pagiging karapat-dapat.",
            "OpenVINO",
        ],
        [
            "Každý má právo na vzdělání. Vzdělání nechť je bezplatné, alespoň v počátečních a základních stupních. Základní vzdělání je povinné. Technické a odborné vzdělání budiž všeobecně přístupné a rovněž vyšší vzdělání má být stejně přístupné všem podle schopností.",
            "OpenVINO",
        ],
        [
            "Baat yii laa mën a wax ci jéego yi Marubba Faal séqi jëm ci bindkat yi taamu làmmiñi réew mi. Am naa ci mbégte lool, ngir yàgg naa ko wax ne bumu xeeb li gafakaam dencal xam-xam yu bawoo ca Maam. Téere bii mu tudde Yóbbalu Ndaw firndeel na sama njort.",
            "OpenVINO",
        ],
    ],
    allow_flagging="never",
)

iface.launch()