import gradio as gr import os from transformers import AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer import pickle import nltk nltk.download('punkt') # tokenizer nltk.download('averaged_perceptron_tagger') # postagger import time from input_format import * from score import * # load document scoring model torch.cuda.is_available = lambda : False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') pretrained_model = 'allenai/specter' tokenizer = AutoTokenizer.from_pretrained(pretrained_model) doc_model = AutoModel.from_pretrained(pretrained_model) doc_model.to(device) # load sentence model sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base') sent_model.to(device) def get_similar_paper( abstract_text_input, author_id_input, results={}, # this state variable will be updated and returned ): progress = gr.Progress() num_papers_show = 10 # number of top papers to show from the reviewer print('retrieving similar papers...') start = time.time() input_sentences = sent_tokenize(abstract_text_input) # Get author papers from id progress(0.1, desc="Retrieving reviewer papers ...") name, papers = get_text_from_author_id(author_id_input) # Compute Doc-level affinity scores for the Papers # print('computing document scores...') progress(0.5, desc="Computing document scores...") # TODO detect duplicate papers? titles, abstracts, paper_urls, doc_scores = compute_document_score( doc_model, tokenizer, abstract_text_input, papers, batch=10 ) results = { 'titles': titles, 'abstracts': abstracts, 'urls': paper_urls, 'doc_scores': doc_scores } # Select top K choices of papers to show titles = titles[:num_papers_show] abstracts = abstracts[:num_papers_show] doc_scores = doc_scores[:num_papers_show] paper_urls = paper_urls[:num_papers_show] display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)] end = time.time() retrieval_time = end - start print('paper retrieval complete in [%0.2f] seconds'%(retrieval_time)) progress(0.4, desc="Obtaining relevant information from the papers...") print('obtaining highlights..') start = time.time() input_sentences = sent_tokenize(abstract_text_input) num_sents = len(input_sentences) for aa, (tt, ab, ds, url) in enumerate(zip(titles, abstracts, doc_scores, paper_urls)): # Compute sent-level and phrase-level affinity scores for each papers sent_ids, sent_scores, info, top_pairs_info = get_highlight_info( sent_model, abstract_text_input, ab, K=2 ) # get scores for each word in the format for Gradio Interpretation component word_scores = dict() for i in range(num_sents): word_scores[str(i)] = { "original": ab, "interpretation": list(zip(info['all_words'], info[i]['scores'])) } results[display_title[aa]] = { 'title': tt, 'abstract': ab, 'doc_score': '%0.3f'%ds, 'source_sentences': input_sentences, 'highlight': word_scores, 'top_pairs': top_pairs_info, 'url': url } end = time.time() highlight_time = end - start print('done in [%0.2f] seconds'%(highlight_time)) ## Set up output elements # set up elements to show out = [ gr.update(choices=display_title, interactive=True, visible=False), # set of papers (radio) gr.update(choices=input_sentences, interactive=True, visible=False) # submission sentences ] # set up elements to visualize upfront top_papers_show = 3 # number of top papers to show upfront top_num_info_show = 2 # number of sentence pairs from each paper to show upfront summary_out = [] for i in range(top_papers_show): out_tmp = [ #gr.update(value=titles[i], visible=True), gr.update(value="#### [%s](%s)"%(titles[i], paper_urls[i]), visible=True), gr.update(value='#### Affinity: %0.3f'%doc_scores[i], visible=True) # document affinity ] tp = results[display_title[i]]['top_pairs'] for j in range(top_num_info_show): out_tmp += [ gr.update(value='%0.3f'%tp[j]['score'], visible=True), # sentence relevance tp[j]['query']['original'], tp[j]['query'], tp[j]['candidate']['original'], tp[j]['candidate'] ] summary_out += out_tmp # add updates to the show more button out = out + summary_out + [gr.update(visible=True)] # make show more button visible assert(len(out) == (top_num_info_show * 5 + 2) * top_papers_show + 3) out += [gr.update(visible=True), gr.update(visible=True)] # demarcation line between results # progress status out += [gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True)] # add the search results to pass on to the Gradio State varaible out += [results] return tuple(out) def show_more(): # show the interactive part of the app return ( gr.update(visible=True), # set of papers gr.update(visible=True), # submission sentences gr.update(visible=True), # title row gr.update(visible=True), # abstract row ) def show_status(): # show search status field when search button is clicked return gr.update(visible=True) def update_name(author_id_input): # update the name of the author based on the id input name, _ = get_text_from_author_id(author_id_input) return gr.update(value=name) def change_output_highlight(selected_papers_radio, source_sent_choice, info={}): # change the output highlight based on the sentence selected from the submission if len(info.keys()) != 0: # if the info is not empty source_sents = info[selected_papers_radio]['source_sentences'] highlights = info[selected_papers_radio]['highlight'] for i, s in enumerate(source_sents): #print('changing highlight') if source_sent_choice == s: return highlights[str(i)] else: return def change_paper(selected_papers_radio, info={}): if len(info.keys()) != 0: # if the info is not empty title = info[selected_papers_radio]['title'] abstract = info[selected_papers_radio]['abstract'] aff_score = info[selected_papers_radio]['doc_score'] highlights = info[selected_papers_radio]['highlight'] url = info[selected_papers_radio]['url'] title_out = '#### [%s](%s)'%(title, url) # output in format of markdown aff_score_out = '#### Affinity: %s'%aff_score return title_out, abstract, aff_score_out, highlights['0'] else: return with gr.Blocks() as demo: info = gr.State({}) # cached search results as a State variable shared throughout # Text description about the app and disclaimer ### TEXT Description # TODO add instruction video link gr.Markdown( """ # Paper Matching Helper This is a tool designed to help match an academic paper (submission) to a potential peer reviewer, by presenting information that may be relevant to the users. Below we describe how to use the tool. Also feel free to check out the [video]() for a more detailed rundown. ##### Input - The tool requires two inputs: (1) an academic paper's abstract in a text format, (2) and a potential reviewer's [Semantic Scholar](https://www.semanticscholar.org/) profile link. Once you put in a valid profile link, the reviewer's name will be displayed. - Once the name is confirmed, press the `What Makes This a Good Match?` button. - Based on the input information, the tool will first search for similar papers from the reviewer's previous publications using [Semantic Scholar API](https://www.semanticscholar.org/product/api). ##### Relevant Parts from Top Papers - You will be shown three most relevant papers from the reviewer with high **affinity scores** (ranging from 0 to 1) computed using text representations from a [language model](https://github.com/allenai/specter/tree/master/specter). - For each of the paper, we present relevant pieces of information from the submission and the paper: two pairs of (sentence relevance score, sentence from the submission abstract, sentnece from the paper abstract) - **Blue highlights** inidicate phrases that are included in both sentences. ##### More Relevant Parts - If the information above is not enough, click `See more relevant parts from other papers` button. - You will see a list top 10 similar papers along with the affinity scores for each. - You can select different papers from the list to see title, abstract, and affinity scores in detail. - Below the list of papers, we highlight relevant parts from the selected paper to different sentences of the submission abstract. - On the left, you will see individual sentences from the submission abstract to select from. - On the right, you will see the abstract of the selected paper, with **highlights** incidating relevant parts to the selected sentence. - **Red highlights**: sentences with high semantic similarity to the selected sentence. The darker the color, the higher the similarity. - **Blue highlights**: phrases included in the selected sentence. - To see relevant parts in a different paper from the reviewer, select the new paper. ------- """ ) ### INPUT with gr.Row() as input_row: with gr.Column(): abstract_text_input = gr.Textbox(label='Submission Abstract') with gr.Column(): with gr.Row(): author_id_input = gr.Textbox(label='Reviewer Link or ID (Semantic Scholar)') with gr.Row(): name = gr.Textbox(label='Confirm Reviewer Name', interactive=False) author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name) with gr.Row(): compute_btn = gr.Button('What Makes This a Good Match?') with gr.Row(): search_status = gr.Textbox(label='Search Status', interactive=False, visible=False) ### OVERVIEW # Paper title, score, and top-ranking sentence pairs -- two sentence pairs per paper, three papers ## ONE BLOCK OF INFO FOR A SINGLE PAPER ## PAPER1 with gr.Row(): with gr.Column(scale=3): paper_title1 = gr.Markdown(value='', visible=False) with gr.Column(scale=1): affinity1 = gr.Markdown(value='', visible=False) with gr.Row() as rel1_1: with gr.Column(scale=1): sent_pair_score1_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1) with gr.Column(scale=4): sent_pair_candidate1_1 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1) with gr.Row() as rel1_2: with gr.Column(scale=1): sent_pair_score1_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2) with gr.Column(scale=4): sent_pair_candidate1_2 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2) with gr.Row(visible=False) as demarc1: gr.Markdown( """---""" ) ## PAPER 2 with gr.Row(): with gr.Column(scale=3): paper_title2 = gr.Markdown(value='', visible=False) with gr.Column(scale=1): #affinity2 = gr.Textbox(label='Affinity', interactive=False, value='', visible=False) affinity2 = gr.Markdown(value='', visible=False) with gr.Row() as rel2_1: with gr.Column(scale=1): sent_pair_score2_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1) with gr.Column(scale=4): sent_pair_candidate2_1 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1) with gr.Row() as rel2_2: with gr.Column(scale=1): sent_pair_score2_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2) with gr.Column(scale=4): sent_pair_candidate2_2 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2) with gr.Row(visible=False) as demarc2: gr.Markdown( """---""" ) ## PAPER 3 with gr.Row(): with gr.Column(scale=3): paper_title3 = gr.Markdown(value='', visible=False) with gr.Column(scale=1): # affinity3 = gr.Textbox(label='Affinity', interactive=False, value='', visible=False) affinity3 = gr.Markdown(value='', visible=False) with gr.Row() as rel3_1: with gr.Column(scale=1): sent_pair_score3_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1) with gr.Column(scale=4): sent_pair_candidate3_1 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1) with gr.Row() as rel3_2: with gr.Column(scale=1): sent_pair_score3_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False) with gr.Column(scale=4): sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False) sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2) with gr.Column(scale=4): sent_pair_candidate3_2 = gr.Textbox(label='Sentence from Paper', visible=False) sent_pair_candidate3_2_hl = gr.components.Interpretation(sent_pair_candidate3_2) ## Show more button with gr.Row(): see_more_rel_btn = gr.Button('See more relevant parts from other papers', visible=False) ### PAPER INFORMATION # show multiple papers in radio check box to select from with gr.Row(): selected_papers_radio = gr.Radio( choices=[], # will be udpated with the button click visible=False, # also will be updated with the button click label='Top Relevant Papers from the Reviewer' ) # selected paper information with gr.Row(visible=False) as title_row: with gr.Column(scale=3): paper_title = gr.Markdown(value='') with gr.Column(scale=1): # affinity= gr.Textbox(label='Affinity', interactive=False, value='') affinity = gr.Markdown(value='') with gr.Row(): paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False) ### RELEVANT PARTS (HIGHLIGHTS) with gr.Row(): with gr.Column(scale=2): # text from submission source_sentences = gr.Radio( choices=[], visible=False, label='Sentences from Submission Abstract', ) with gr.Column(scale=3): # highlighted text from paper highlight = gr.components.Interpretation(paper_abstract) ### EVENT LISTENERS compute_btn.click( fn=show_status, inputs=[], outputs=search_status ) # retrieve similar papers and show top results compute_btn.click( fn=get_similar_paper, inputs=[ abstract_text_input, author_id_input, info ], outputs=[ selected_papers_radio, source_sentences, paper_title1, # paper info affinity1, sent_pair_score1_1, sent_pair_source1_1, sent_pair_source1_1_hl, sent_pair_candidate1_1, sent_pair_candidate1_1_hl, sent_pair_score1_2, sent_pair_source1_2, sent_pair_source1_2_hl, sent_pair_candidate1_2, sent_pair_candidate1_2_hl, paper_title2, affinity2, sent_pair_score2_1, sent_pair_source2_1, sent_pair_source2_1_hl, sent_pair_candidate2_1, sent_pair_candidate2_1_hl, sent_pair_score2_2, sent_pair_source2_2, sent_pair_source2_2_hl, sent_pair_candidate2_2, sent_pair_candidate2_2_hl, paper_title3, affinity3, sent_pair_score3_1, sent_pair_source3_1, sent_pair_source3_1_hl, sent_pair_candidate3_1, sent_pair_candidate3_1_hl, sent_pair_score3_2, sent_pair_source3_2, sent_pair_source3_2_hl, sent_pair_candidate3_2, sent_pair_candidate3_2_hl, see_more_rel_btn, demarc1, demarc2, search_status, info, ] ) # Get more info (move to more interactive portion) see_more_rel_btn.click( fn=show_more, inputs=None, outputs=[ selected_papers_radio, source_sentences, title_row, paper_abstract ] ) # change highlight based on selected sentences from submission source_sentences.change( fn=change_output_highlight, inputs=[ selected_papers_radio, source_sentences, info ], outputs=highlight ) # change paper to show based on selected papers selected_papers_radio.change( fn=change_paper, inputs=[ selected_papers_radio, info, ], outputs= [ paper_title, paper_abstract, affinity, highlight ] ) gr.Markdown( """ --------- **Disclaimer.** This tool and its output should not serve as the sole justification for confirming a match for the submission. It is intended as a supplementary tool that the users may use at their discretion; the correctness of the output of the tool is not guaranteed. This may be improved by updating the internal models used to compute the affinity scores and sentence relevance, which may require additional research independently. The tool does not compromise the privacy of the reviewers as it relies only on their publicly-available information (e.g., names and list of previously published papers). """ ) if __name__ == "__main__": demo.launch()