jskim commited on
Commit
fd61399
·
1 Parent(s): c74715f

gradio version update. adding more examples for the task. adding new fields for each paper.

Browse files
Files changed (5) hide show
  1. app.py +97 -34
  2. input_format.py +4 -61
  3. requirements.txt +6 -11
  4. score.py +7 -1
  5. style.css +1 -1
app.py CHANGED
@@ -53,7 +53,7 @@ def get_similar_paper(
53
  # print('computing document scores...')
54
  #progress(0.5, desc="Computing document scores...")
55
  # TODO detect duplicate papers?
56
- titles, abstracts, paper_urls, doc_scores = compute_document_score(
57
  doc_model,
58
  tokenizer,
59
  title_input,
@@ -68,7 +68,9 @@ def get_similar_paper(
68
  'titles': titles,
69
  'abstracts': abstracts,
70
  'urls': paper_urls,
71
- 'doc_scores': doc_scores
 
 
72
  }
73
 
74
  # Select top 10 papers to show
@@ -76,6 +78,8 @@ def get_similar_paper(
76
  abstracts = abstracts[:10]
77
  doc_scores = doc_scores[:10]
78
  paper_urls = paper_urls[:10]
 
 
79
 
80
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
81
  end = time.time()
@@ -119,7 +123,9 @@ def get_similar_paper(
119
  'source_sentences': input_sentences,
120
  'highlight': word_scores,
121
  'top_pairs': top_pairs_info,
122
- 'url': url
 
 
123
  }
124
 
125
  end = time.time()
@@ -127,12 +133,11 @@ def get_similar_paper(
127
  print('done in [%0.2f] seconds'%(highlight_time))
128
 
129
  ## Set up output elements
130
-
131
  ## Components for Initial Part
132
  result1_desc_value = """
133
  <h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
134
 
135
- For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
136
 
137
  **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
138
  """%(int(top_paper_slider), author_id_input, results['name'], int(top_pair_slider))
@@ -161,7 +166,7 @@ def get_similar_paper(
161
  title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
162
  aff_score_out = '##### Affinity Score: %s'%aff_score
163
  result2_desc_value = """
164
- ##### Click a paper by %s (left, sorted by affinity scores), and a sentence from the submission (center), to see which parts of the paper are relevant (right).
165
  """%results['name']
166
  out3 = [
167
  gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
@@ -169,9 +174,11 @@ def get_similar_paper(
169
  gr.update(value=title_out), # paper_title
170
  gr.update(value=aff_score_out), # affinity
171
  gr.update(value=result2_desc_value), # result 2 description (show more section)
172
- gr.update(value=1, maximum=len(sent_tokenize(abstracts[0]))), # highlight slider to control
173
  ]
174
 
 
 
175
  ## Return by adding the State variable info
176
  return out1 + out2 + out3 + [results]
177
 
@@ -179,9 +186,12 @@ def setup_outputs(info, top_papers_show, top_num_info_show):
179
  titles = info['titles']
180
  doc_scores = info['doc_scores']
181
  paper_urls = info['urls']
 
 
182
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(info['titles'], info['doc_scores'])]
183
  title = []
184
  affinity = []
 
185
  sent_pair_score = []
186
  sent_text_query = []
187
  sent_text_candidate = []
@@ -191,22 +201,28 @@ def setup_outputs(info, top_papers_show, top_num_info_show):
191
  for i in range(top_papers_show):
192
  if i == 0:
193
  title.append(
194
- gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
195
  )
196
  affinity.append(
197
  gr.update(value="""#### Affinity Score: %0.3f
198
  <div class="help-tip">
199
- <p>Measures how similar the paper's abstract is to the submission abstract.</p>
200
  </div>
201
  """%doc_scores[i], visible=True) # document affinity
202
  )
 
 
 
203
  else:
204
  title.append(
205
- gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
206
  )
207
  affinity.append(
208
  gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
209
  )
 
 
 
210
  demarc_lines.append(gr.Markdown.update(visible=True))
211
 
212
  # fill in the rest as
@@ -238,6 +254,7 @@ def setup_outputs(info, top_papers_show, top_num_info_show):
238
  # mark others not visible
239
  title += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
240
  affinity += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
 
241
  demarc_lines += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
242
  sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
243
  sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
@@ -249,7 +266,7 @@ def setup_outputs(info, top_papers_show, top_num_info_show):
249
  assert(len(affinity) == NUM_PAPERS_SHOW)
250
  assert(len(sent_pair_score) == NUM_PAIRS_SHOW * NUM_PAPERS_SHOW)
251
 
252
- return title, affinity, demarc_lines, sent_pair_score, sent_text_query, sent_text_candidate, sent_hl_query, sent_hl_candidate
253
 
254
  def show_more(info):
255
  # show the interactive part of the app
@@ -259,6 +276,7 @@ def show_more(info):
259
  gr.update(visible=True), # submission sentences
260
  gr.update(visible=True), # title row
261
  gr.update(visible=True), # affinity row
 
262
  gr.update(visible=True), # highlight legend
263
  gr.update(visible=True), # highlight slider
264
  gr.update(visible=True), # highlight abstract
@@ -298,18 +316,21 @@ def change_paper(
298
  if len(info.keys()) != 0: # if the info is not empty
299
  source_sents = info[selected_papers_radio]['source_sentences']
300
  title = info[selected_papers_radio]['title']
 
 
301
  num_sents = info[selected_papers_radio]['num_cand_sents']
302
  abstract = info[selected_papers_radio]['abstract']
303
  aff_score = info[selected_papers_radio]['doc_score']
304
  highlights = info[selected_papers_radio]['highlight']
305
  url = info[selected_papers_radio]['url']
306
- title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
307
  aff_score_out = '##### Affinity Score: %s'%aff_score
 
308
  idx = source_sents.index(source_sent_choice)
309
  if highlight_slider <= num_sents:
310
- return title_out, abstract, aff_score_out, highlights[str(idx)][str(highlight_slider)], gr.update(value=highlight_slider, maximum=num_sents)
311
  else: # if the slider is set to more than the current number of sentences, show the max number of highlights
312
- return title_out, abstract, aff_score_out, highlights[str(idx)][str(num_sents)], gr.update(value=num_sents, maximum=num_sents)
313
  else:
314
  return
315
 
@@ -334,7 +355,7 @@ def change_top_output(top_paper_slider, top_pair_slider, info={}):
334
  result1_desc_value = """
335
  <h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
336
 
337
- For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
338
 
339
  **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
340
  """%(int(top_paper_slider), info['author_url'], info['name'], int(top_pair_slider))
@@ -363,9 +384,9 @@ It is for meta-reviewers, area chairs, program chairs, or anyone who oversees th
363
  <center><img src="file/tool-img.jpeg" width="70%" alt="general workflow"></center>
364
 
365
  #### How does it help?
366
- A typical meta-reviewer workflow lacks supportive information on **what makes the pre-selected candidate reviewers a good fit** for the submission. Only affinity scores between the reviewer and the paper are shown, without additional detail.
367
 
368
- R2P2 provides more information about each reviewer. It searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
369
  """
370
  # More details (video, addendum)
371
  more_details_instruction = """Check out <a href="https://drive.google.com/file/d/1Ex_-cOplBitO7riNGliecFc8H3chXUN-/view?usp=share_link", target="_blank">this video</a> for a quick introduction of what R2P2 is and how it can help. You can find more details <a href="file/details.html", target="_blank">here</a>, along with our privacy policy and disclaimer."""
@@ -374,6 +395,33 @@ R2P2 provides more information about each reviewer. It searches for the **most r
374
  gr.HTML(more_details_instruction)
375
  gr.Markdown("""---""")
376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  ### INPUT
378
  with gr.Row() as input_row:
379
  with gr.Column(scale=3):
@@ -388,15 +436,17 @@ R2P2 provides more information about each reviewer. It searches for the **most r
388
  name = gr.Textbox(label='Confirm Reviewer Name', info='This will be automatically updated based on the reviewer profile link above', interactive=False)
389
  author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
390
 
391
- # Add examples
392
- example_title ="The Toronto Paper Matching System: An automated paper-reviewer assignment system"
393
- example_submission = """One of the most important tasks of conference organizers is the assignment of papers to reviewers. Reviewers' assessments of papers is a crucial step in determining the conference program, and in a certain sense to shape the direction of a field. However this is not a simple task: large conferences typically have to assign hundreds of papers to hundreds of reviewers, and time constraints make the task impossible for one person to accomplish. Furthermore other constraints, such as reviewer load have to be taken into account, preventing the process from being completely distributed. We built the first version of a system to suggest reviewer assignments for the NIPS 2010 conference, followed, in 2012, by a release that better integrated our system with Microsoft's popular Conference Management Toolkit (CMT). Since then our system has been widely adopted by the leading conferences in both the machine learning and computer vision communities. This paper provides an overview of the system, a summary of learning models and methods of evaluation that we have been using, as well as some of the recent progress and open issues."""
394
- example_reviewer = "https://www.semanticscholar.org/author/Nihar-B.-Shah/1737249"
395
  gr.Examples(
396
- examples=[[example_title, example_submission, example_reviewer]],
 
 
 
 
 
 
397
  inputs=[title_input, abstract_text_input, author_id_input],
398
  cache_examples=False,
399
- label="Try out the following example input."
400
  )
401
 
402
  with gr.Row():
@@ -409,16 +459,18 @@ R2P2 provides more information about each reviewer. It searches for the **most r
409
  # Paper title, score, and top-ranking sentence pairs
410
  # a knob for controlling the number of output displayed
411
  with gr.Row():
412
- with gr.Column(scale=5):
413
  result1_desc = gr.Markdown(value='', visible=False)
414
  with gr.Column(scale=2):
415
- with gr.Row():
416
- top_paper_slider = gr.Slider(label='Top-K Papers by the Reviewer', value=3, minimum=3, step=1, maximum=NUM_PAPERS_SHOW, visible=False)
417
- with gr.Row():
418
- top_pair_slider = gr.Slider(label='Top-K Sentence Pairs per Paper', value=2, minimum=2, step=1, maximum=NUM_PAIRS_SHOW, visible=False)
 
419
 
420
  paper_title_up = []
421
  paper_affinity_up = []
 
422
  sent_pair_score = []
423
  sent_text_query = []
424
  sent_text_candidate = []
@@ -434,6 +486,9 @@ R2P2 provides more information about each reviewer. It searches for the **most r
434
  with gr.Column(scale=3):
435
  tt = gr.Markdown(value='', visible=False)
436
  paper_title_up.append(tt)
 
 
 
437
  with gr.Column(scale=1):
438
  aff = gr.Markdown(value='', visible=False)
439
  paper_affinity_up.append(aff)
@@ -443,12 +498,14 @@ R2P2 provides more information about each reviewer. It searches for the **most r
443
  sps = gr.Markdown(value='', visible=False)
444
  sent_pair_score.append(sps)
445
  with gr.Column(scale=5):
446
- stq = gr.Textbox(label='Sentence from Submission', visible=False)
 
447
  shq = gr.components.Interpretation(stq, visible=False)
448
  sent_text_query.append(stq)
449
  sent_hl_query.append(shq)
450
  with gr.Column(scale=5):
451
- stc = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
 
452
  shc = gr.components.Interpretation(stc, visible=False)
453
  sent_text_candidate.append(stc)
454
  sent_hl_candidate.append(shc)
@@ -458,7 +515,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
458
 
459
  ## Show more button
460
  with gr.Row():
461
- see_more_rel_btn = gr.Button('Explore more', visible=False)
462
 
463
  ### PAPER INFORMATION
464
 
@@ -474,7 +531,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
474
  """
475
  #---"""
476
  # show multiple papers in radio check box to select from
477
- paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False)
478
  with gr.Row():
479
  with gr.Column(scale=1):
480
  selected_papers_radio = gr.Radio(
@@ -510,6 +567,9 @@ R2P2 provides more information about each reviewer. It searches for the **most r
510
  with gr.Row(visible=False) as aff_row:
511
  # selected paper's affinity score
512
  affinity = gr.Markdown(value='')
 
 
 
513
  with gr.Row(visible=False) as hl_row:
514
  # highlighted text from paper
515
  highlight = gr.components.Interpretation(paper_abstract)
@@ -526,7 +586,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
526
  ]
527
 
528
  init_result_components = \
529
- paper_title_up + paper_affinity_up + demarc_lines + sent_pair_score + \
530
  sent_text_query + sent_text_candidate + sent_hl_query + sent_hl_candidate
531
 
532
  explore_more_components = [
@@ -569,6 +629,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
569
  source_sentences,
570
  title_row,
571
  aff_row,
 
572
  highlight_legend,
573
  highlight_slider,
574
  hl_row,
@@ -600,6 +661,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
600
  paper_title,
601
  paper_abstract,
602
  affinity,
 
603
  highlight,
604
  highlight_slider
605
  ]
@@ -642,4 +704,5 @@ R2P2 provides more information about each reviewer. It searches for the **most r
642
  )
643
 
644
  if __name__ == "__main__":
645
- demo.queue().launch() # add ?__theme=light to force light mode
 
 
53
  # print('computing document scores...')
54
  #progress(0.5, desc="Computing document scores...")
55
  # TODO detect duplicate papers?
56
+ titles, abstracts, paper_urls, doc_scores, paper_years, paper_citations = compute_document_score(
57
  doc_model,
58
  tokenizer,
59
  title_input,
 
68
  'titles': titles,
69
  'abstracts': abstracts,
70
  'urls': paper_urls,
71
+ 'doc_scores': doc_scores,
72
+ 'years': paper_years,
73
+ 'citations': paper_citations,
74
  }
75
 
76
  # Select top 10 papers to show
 
78
  abstracts = abstracts[:10]
79
  doc_scores = doc_scores[:10]
80
  paper_urls = paper_urls[:10]
81
+ paper_years = paper_years[:10]
82
+ paper_citations = paper_citations[:10]
83
 
84
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
85
  end = time.time()
 
123
  'source_sentences': input_sentences,
124
  'highlight': word_scores,
125
  'top_pairs': top_pairs_info,
126
+ 'url': url,
127
+ 'year': paper_years[aa],
128
+ 'citations': paper_citations[aa],
129
  }
130
 
131
  end = time.time()
 
133
  print('done in [%0.2f] seconds'%(highlight_time))
134
 
135
  ## Set up output elements
 
136
  ## Components for Initial Part
137
  result1_desc_value = """
138
  <h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
139
 
140
+ For each paper, top %d sentence pairs (one from the submission on the left, one from the paper on the right) with the highest relevance scores are shown.
141
 
142
  **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
143
  """%(int(top_paper_slider), author_id_input, results['name'], int(top_pair_slider))
 
166
  title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
167
  aff_score_out = '##### Affinity Score: %s'%aff_score
168
  result2_desc_value = """
169
+ ##### Click a paper by %s (left, sorted by affinity scores), and a sentence from the submission abstract (center), to see which parts of the paper's abstract are relevant (right).
170
  """%results['name']
171
  out3 = [
172
  gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
 
174
  gr.update(value=title_out), # paper_title
175
  gr.update(value=aff_score_out), # affinity
176
  gr.update(value=result2_desc_value), # result 2 description (show more section)
177
+ gr.update(value=2, maximum=len(sent_tokenize(abstracts[0]))), # highlight slider to control
178
  ]
179
 
180
+ torch.cuda.empty_cache()
181
+
182
  ## Return by adding the State variable info
183
  return out1 + out2 + out3 + [results]
184
 
 
186
  titles = info['titles']
187
  doc_scores = info['doc_scores']
188
  paper_urls = info['urls']
189
+ paper_years = info['years']
190
+ paper_citations = info['citations']
191
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(info['titles'], info['doc_scores'])]
192
  title = []
193
  affinity = []
194
+ citation_count = []
195
  sent_pair_score = []
196
  sent_text_query = []
197
  sent_text_candidate = []
 
201
  for i in range(top_papers_show):
202
  if i == 0:
203
  title.append(
204
+ gr.update(value="""<a href="%s" target="_blank"><h4>%s (%s)</h4></a>"""%(paper_urls[i], titles[i], str(paper_years[i])), visible=True)
205
  )
206
  affinity.append(
207
  gr.update(value="""#### Affinity Score: %0.3f
208
  <div class="help-tip">
209
+ <p>Measures how similar the paper's abstract is to the submission abstract.</p>
210
  </div>
211
  """%doc_scores[i], visible=True) # document affinity
212
  )
213
+ citation_count.append(
214
+ gr.update(value="""#### Citation Count: %d"""%paper_citations[i], visible=True) # document affinity
215
+ )
216
  else:
217
  title.append(
218
+ gr.update(value="""<a href="%s" target="_blank"><h4>%s (%s)</h4></a>"""%(paper_urls[i], titles[i], str(paper_years[i])), visible=True)
219
  )
220
  affinity.append(
221
  gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
222
  )
223
+ citation_count.append(
224
+ gr.update(value="""#### Citation Count: %d"""%paper_citations[i], visible=True) # document affinity
225
+ )
226
  demarc_lines.append(gr.Markdown.update(visible=True))
227
 
228
  # fill in the rest as
 
254
  # mark others not visible
255
  title += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
256
  affinity += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
257
+ citation_count += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
258
  demarc_lines += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
259
  sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
260
  sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
 
266
  assert(len(affinity) == NUM_PAPERS_SHOW)
267
  assert(len(sent_pair_score) == NUM_PAIRS_SHOW * NUM_PAPERS_SHOW)
268
 
269
+ return title, affinity, citation_count, demarc_lines, sent_pair_score, sent_text_query, sent_text_candidate, sent_hl_query, sent_hl_candidate
270
 
271
  def show_more(info):
272
  # show the interactive part of the app
 
276
  gr.update(visible=True), # submission sentences
277
  gr.update(visible=True), # title row
278
  gr.update(visible=True), # affinity row
279
+ gr.update(visible=True), # citation row
280
  gr.update(visible=True), # highlight legend
281
  gr.update(visible=True), # highlight slider
282
  gr.update(visible=True), # highlight abstract
 
316
  if len(info.keys()) != 0: # if the info is not empty
317
  source_sents = info[selected_papers_radio]['source_sentences']
318
  title = info[selected_papers_radio]['title']
319
+ year = info[selected_papers_radio]['year']
320
+ citation_count = info[selected_papers_radio]['citations']
321
  num_sents = info[selected_papers_radio]['num_cand_sents']
322
  abstract = info[selected_papers_radio]['abstract']
323
  aff_score = info[selected_papers_radio]['doc_score']
324
  highlights = info[selected_papers_radio]['highlight']
325
  url = info[selected_papers_radio]['url']
326
+ title_out = """<a href="%s" target="_blank"><h5>%s (%s)</h5></a>"""%(url, title, str(year))
327
  aff_score_out = '##### Affinity Score: %s'%aff_score
328
+ citation_count_out = '##### Citation Count: %s'%citation_count
329
  idx = source_sents.index(source_sent_choice)
330
  if highlight_slider <= num_sents:
331
+ return title_out, abstract, aff_score_out, citation_count_out, highlights[str(idx)][str(highlight_slider)], gr.update(value=highlight_slider, maximum=num_sents)
332
  else: # if the slider is set to more than the current number of sentences, show the max number of highlights
333
+ return title_out, abstract, aff_score_out, citation_count_out, highlights[str(idx)][str(num_sents)], gr.update(value=num_sents, maximum=num_sents)
334
  else:
335
  return
336
 
 
355
  result1_desc_value = """
356
  <h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
357
 
358
+ For each paper, top %d sentence pairs (one from the submission on the left, one from the paper on the right) with the highest relevance scores are shown.
359
 
360
  **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
361
  """%(int(top_paper_slider), info['author_url'], info['name'], int(top_pair_slider))
 
384
  <center><img src="file/tool-img.jpeg" width="70%" alt="general workflow"></center>
385
 
386
  #### How does it help?
387
+ A typical meta-reviewer workflow lacks supportive information on **what makes the pre-selected candidate reviewers a good fit** for the submission. Only affinity scores between the reviewer and the paper are shown, without additional details on what makes them similar/different.
388
 
389
+ R2P2 provides more information about each reviewer. Given a paper and a reviewer, it searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
390
  """
391
  # More details (video, addendum)
392
  more_details_instruction = """Check out <a href="https://drive.google.com/file/d/1Ex_-cOplBitO7riNGliecFc8H3chXUN-/view?usp=share_link", target="_blank">this video</a> for a quick introduction of what R2P2 is and how it can help. You can find more details <a href="file/details.html", target="_blank">here</a>, along with our privacy policy and disclaimer."""
 
395
  gr.HTML(more_details_instruction)
396
  gr.Markdown("""---""")
397
 
398
+ # Add main example
399
+ example_title ="The Toronto Paper Matching System: An automated paper-reviewer assignment system"
400
+ example_submission = """One of the most important tasks of conference organizers is the assignment of papers to reviewers. Reviewers' assessments of papers is a crucial step in determining the conference program, and in a certain sense to shape the direction of a field. However this is not a simple task: large conferences typically have to assign hundreds of papers to hundreds of reviewers, and time constraints make the task impossible for one person to accomplish. Furthermore other constraints, such as reviewer load have to be taken into account, preventing the process from being completely distributed. We built the first version of a system to suggest reviewer assignments for the NIPS 2010 conference, followed, in 2012, by a release that better integrated our system with Microsoft's popular Conference Management Toolkit (CMT). Since then our system has been widely adopted by the leading conferences in both the machine learning and computer vision communities. This paper provides an overview of the system, a summary of learning models and methods of evaluation that we have been using, as well as some of the recent progress and open issues."""
401
+ example_reviewer = "https://www.semanticscholar.org/author/Nihar-B.-Shah/1737249"
402
+
403
+ ## Add other examples for the task
404
+
405
+ # match 1
406
+ # example1_title = "VoroCNN: Deep convolutional neural network built on 3D Voronoi tessellation of protein structures"
407
+ # example1_submission = """Effective use of evolutionary information has recently led to tremendous progress in computational prediction of three-dimensional (3D) structures of proteins and their complexes. Despite the progress, the accuracy of predicted structures tends to vary considerably from case to case. Since the utility of computational models depends on their accuracy, reliable estimates of deviation between predicted and native structures are of utmost importance. Results For the first time we present a deep convolutional neural network (CNN) constructed on a Voronoi tessellation of 3D molecular structures. Despite the irregular data domain, our data representation allows to efficiently introduce both convolution and pooling operations of the network. We trained our model, called VoroCNN, to predict local qualities of 3D protein folds. The prediction results are competitive to the state of the art and superior to the previous 3D CNN architectures built for the same task. We also discuss practical applications of VoroCNN, for example, in the recognition of protein binding interfaces. Availability The model, data, and evaluation tests are available at https://team.inria.fr/nano-d/software/vorocnn/. Contact [email protected], [email protected]"""
408
+ # example1_reviewer = "https://www.semanticscholar.org/author/2025052385"
409
+
410
+ # # match 2
411
+ # example2_title = "Model-based Policy Optimization with Unsupervised Model Adaptation"
412
+ # example2_submission = """Model-based reinforcement learning methods learn a dynamics model with real data sampled from the environment and leverage it to generate simulated data to derive an agent. However, due to the potential distribution mismatch between simulated data and real data, this could lead to degraded performance. Despite much effort being devoted to reducing this distribution mismatch, existing methods fail to solve it explicitly. In this paper, we investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization. To begin with, we first derive a lower bound of the expected return, which naturally inspires a bound maximization algorithm by aligning the simulated and real data distributions. To this end, we propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation to minimize the integral probability metric (IPM) between feature distributions from real and simulated data. Instantiating our framework with Wasserstein-1 distance gives a practical model-based approach. Empirically, our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks."""
413
+ # example2_reviewer = "https://www.semanticscholar.org/author/144974941"
414
+
415
+ # # match 3
416
+ # example3_title = "Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance"
417
+ # example3_submission = """The Wasserstein distance between two probability measures on a metric space is a measure of closeness with applications in statistics, probability, and machine learning. In this work, we consider the fundamental question of how quickly the empirical measure obtained from $n$ independent samples from $\mu$ approaches $\mu$ in the Wasserstein distance of any order. We prove sharp asymptotic and finite-sample results for this rate of convergence for general measures on general compact metric spaces. Our finite-sample results show the existence of multi-scale behavior, where measures can exhibit radically different rates of convergence as $n$ grows."""
418
+ # example3_reviewer = "https://www.semanticscholar.org/author/27911143"
419
+
420
+ # # match 4
421
+ # example4_title = "Deep Neural Networks for Estimation and Inference: Application to Causal Effects and Other Semiparametric Estimands"
422
+ # example4_submission = """We study deep neural networks and their use in semiparametric inference. We prove valid inference after first-step estimation with deep learning, a result new to the literature. We provide new rates of convergence for deep feedforward neural nets and, because our rates are sufficiently fast (in some cases minimax optimal), obtain valid semiparametric inference. Our estimation rates and semiparametric inference results handle the current standard architecture: fully connected feedforward neural networks (multi-layer perceptrons), with the now-common rectified linear unit activation function and a depth explicitly diverging with the sample size. We discuss other architectures as well, including fixed-width, very deep networks. We establish nonasymptotic bounds for these deep nets for nonparametric regression, covering the standard least squares and logistic losses in particular. We then apply our theory to develop semiparametric inference, focusing on treatment effects, expected welfare, and decomposition effects for concreteness. Inference in many other semiparametric contexts can be readily obtained. We demonstrate the effectiveness of deep learning with a Monte Carlo analysis and an empirical application to direct mail marketing."""
423
+ # example4_reviewer = "https://www.semanticscholar.org/author/3364789"
424
+
425
  ### INPUT
426
  with gr.Row() as input_row:
427
  with gr.Column(scale=3):
 
436
  name = gr.Textbox(label='Confirm Reviewer Name', info='This will be automatically updated based on the reviewer profile link above', interactive=False)
437
  author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
438
 
 
 
 
 
439
  gr.Examples(
440
+ examples=[
441
+ [example_title, example_submission, example_reviewer],
442
+ # [example1_title, example1_submission, example1_reviewer],
443
+ # [example2_title, example2_submission, example2_reviewer],
444
+ # [example3_title, example3_submission, example3_reviewer],
445
+ # [example4_title, example4_submission, example4_reviewer],
446
+ ],
447
  inputs=[title_input, abstract_text_input, author_id_input],
448
  cache_examples=False,
449
+ label="Try out the following example input. Click on a row to fill in the input fields accordingly."
450
  )
451
 
452
  with gr.Row():
 
459
  # Paper title, score, and top-ranking sentence pairs
460
  # a knob for controlling the number of output displayed
461
  with gr.Row():
462
+ with gr.Column(scale=3):
463
  result1_desc = gr.Markdown(value='', visible=False)
464
  with gr.Column(scale=2):
465
+ # with gr.Row():
466
+ top_paper_slider = gr.Slider(label='Number of papers to show', value=3, minimum=3, step=1, maximum=NUM_PAPERS_SHOW, visible=False)
467
+ with gr.Column(scale=2):
468
+ #with gr.Row():
469
+ top_pair_slider = gr.Slider(label='Number of sentence pairs to show', value=2, minimum=2, step=1, maximum=NUM_PAIRS_SHOW, visible=False)
470
 
471
  paper_title_up = []
472
  paper_affinity_up = []
473
+ citation_count = []
474
  sent_pair_score = []
475
  sent_text_query = []
476
  sent_text_candidate = []
 
486
  with gr.Column(scale=3):
487
  tt = gr.Markdown(value='', visible=False)
488
  paper_title_up.append(tt)
489
+ with gr.Column(scale=1):
490
+ cc = gr.Markdown(value='', visible=False)
491
+ citation_count.append(cc)
492
  with gr.Column(scale=1):
493
  aff = gr.Markdown(value='', visible=False)
494
  paper_affinity_up.append(aff)
 
498
  sps = gr.Markdown(value='', visible=False)
499
  sent_pair_score.append(sps)
500
  with gr.Column(scale=5):
501
+ #stq = gr.Textbox(label='Sentence from Submission', visible=False)
502
+ stq = gr.Textbox(label='', visible=False)
503
  shq = gr.components.Interpretation(stq, visible=False)
504
  sent_text_query.append(stq)
505
  sent_hl_query.append(shq)
506
  with gr.Column(scale=5):
507
+ #stc = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
508
+ stc = gr.Textbox(label="", visible=False)
509
  shc = gr.components.Interpretation(stc, visible=False)
510
  sent_text_candidate.append(stc)
511
  sent_hl_candidate.append(shc)
 
515
 
516
  ## Show more button
517
  with gr.Row():
518
+ see_more_rel_btn = gr.Button('Not Enough Information? Explore More', visible=False)
519
 
520
  ### PAPER INFORMATION
521
 
 
531
  """
532
  #---"""
533
  # show multiple papers in radio check box to select from
534
+ paper_abstract = gr.Textbox(label='', interactive=False, visible=False)
535
  with gr.Row():
536
  with gr.Column(scale=1):
537
  selected_papers_radio = gr.Radio(
 
567
  with gr.Row(visible=False) as aff_row:
568
  # selected paper's affinity score
569
  affinity = gr.Markdown(value='')
570
+ with gr.Row(visible=False) as cite_row:
571
+ # selected paper's citation count
572
+ citation = gr.Markdown(value='')
573
  with gr.Row(visible=False) as hl_row:
574
  # highlighted text from paper
575
  highlight = gr.components.Interpretation(paper_abstract)
 
586
  ]
587
 
588
  init_result_components = \
589
+ paper_title_up + paper_affinity_up + citation_count + demarc_lines + sent_pair_score + \
590
  sent_text_query + sent_text_candidate + sent_hl_query + sent_hl_candidate
591
 
592
  explore_more_components = [
 
629
  source_sentences,
630
  title_row,
631
  aff_row,
632
+ cite_row,
633
  highlight_legend,
634
  highlight_slider,
635
  hl_row,
 
661
  paper_title,
662
  paper_abstract,
663
  affinity,
664
+ citation,
665
  highlight,
666
  highlight_slider
667
  ]
 
704
  )
705
 
706
  if __name__ == "__main__":
707
+ #demo.queue().launch(debug=True) # add ?__theme=light to force light mode
708
+ demo.queue().launch(share=True) # add ?__theme=light to force light mode
input_format.py CHANGED
@@ -1,67 +1,9 @@
1
- from pypdf import PdfReader
2
  from urllib.parse import urlparse
3
  import requests
4
  from semanticscholar import SemanticScholar
5
 
6
- ### Input Formatting Module
7
 
8
- ## Input formatting for the given paper
9
- # Extracting text from a pdf or a link
10
-
11
- def get_text_from_pdf(file_path):
12
- """
13
- Convert a pdf to list of text files
14
- """
15
- reader = PdfReader(file_path)
16
- text = []
17
- for p in reader.pages:
18
- t = p.extract_text()
19
- text.append(t)
20
- return text
21
-
22
- def get_text_from_url(url, file_path='paper.pdf'):
23
- """
24
- Get text of the paper from a url
25
- """
26
- ## Check for different URL cases
27
- url_parts = urlparse(url)
28
- # arxiv
29
- if 'arxiv' in url_parts.netloc:
30
- if 'abs' in url_parts.path:
31
- # abstract page, change the url to pdf link
32
- paper_id = url_parts.path.split('/')[-1]
33
- url = 'https://www.arxiv.org/pdf/%s.pdf'%(paper_id)
34
- elif 'pdf' in url_parts.path:
35
- # pdf file, pass
36
- pass
37
- else:
38
- raise ValueError('invalid url')
39
- else:
40
- raise ValueError('invalid url')
41
-
42
- # download the file
43
- download_pdf(url, file_path)
44
-
45
- # get the text from the pdf file
46
- text = get_text_from_pdf(file_path)
47
- return text
48
-
49
- def download_pdf(url, file_name):
50
- """
51
- Download the pdf file from given url and save it as file_name
52
- """
53
- # Send GET request
54
- response = requests.get(url)
55
-
56
- # Save the PDF
57
- if response.status_code == 200:
58
- with open(file_name, "wb") as f:
59
- f.write(response.content)
60
- elif response.status_code == 404:
61
- raise ValueError('cannot download the file')
62
- else:
63
- print(response.status_code)
64
-
65
  ## Input formatting for the given author (reviewer)
66
  # Extracting text from a link
67
 
@@ -71,8 +13,9 @@ def get_text_from_author_id(author_id, max_count=150):
71
  aid = str(author_id)
72
  if 'http' in aid: # handle semantic scholar url input
73
  aid = aid.split('/')
74
- aid = aid[aid.index('author')+2]
75
- url = "https://api.semanticscholar.org/graph/v1/author/%s?fields=url,name,paperCount,papers,papers.title,papers.abstract,papers.url"%aid
 
76
  r = requests.get(url)
77
  if r.status_code == 404:
78
  raise ValueError('Author link not found.')
 
 
1
  from urllib.parse import urlparse
2
  import requests
3
  from semanticscholar import SemanticScholar
4
 
5
+ ### Input Formatting
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ## Input formatting for the given author (reviewer)
8
  # Extracting text from a link
9
 
 
13
  aid = str(author_id)
14
  if 'http' in aid: # handle semantic scholar url input
15
  aid = aid.split('/')
16
+ aid = aid[-1]
17
+ # aid = aid[aid.index('author')+2]
18
+ url = "https://api.semanticscholar.org/graph/v1/author/%s?fields=url,name,paperCount,papers,papers.title,papers.abstract,papers.url,papers.year,papers.citationCount"%aid
19
  r = requests.get(url)
20
  if r.status_code == 404:
21
  raise ValueError('Author link not found.')
requirements.txt CHANGED
@@ -1,16 +1,11 @@
1
- gradio==3.20.1
2
- huggingface-hub==0.8.1
3
  nltk==3.7
4
- numpy==1.21.6
5
- py-pdf-parser==0.10.2
6
- py-rouge==1.1
7
- pypdf==3.3.0
8
- pyrogue==0.0.2
9
  requests==2.28.1
10
- rouge-score==0.1.2
11
  semanticscholar==0.3.2
12
- sentence-transformers==2.2.0
13
  torch==1.9.0
14
- transformers
15
  urllib3==1.26.6
16
- tqdm
 
1
+ gradio==3.24.1
2
+ huggingface-hub
3
  nltk==3.7
4
+ numpy
 
 
 
 
5
  requests==2.28.1
 
6
  semanticscholar==0.3.2
7
+ sentence-transformers==2.2.2
8
  torch==1.9.0
9
+ transformers==4.27.4
10
  urllib3==1.26.6
11
+ tqdm
score.py CHANGED
@@ -338,11 +338,15 @@ def compute_document_score(doc_model, tokenizer, query_title, query_abs, papers,
338
  titles = []
339
  abstracts = []
340
  urls = []
 
 
341
  for p in papers:
342
  if p['title'] is not None and p['abstract'] is not None:
343
  titles.append(p['title'])
344
  abstracts.append(p['abstract'])
345
  urls.append(p['url'])
 
 
346
  if query_title == '':
347
  query = query_abs
348
  else:
@@ -355,5 +359,7 @@ def compute_document_score(doc_model, tokenizer, query_title, query_abs, papers,
355
  abstracts_sorted = [abstracts[x] for x in idx_sorted]
356
  scores_sorted = [scores[x] for x in idx_sorted]
357
  urls_sorted = [urls[x] for x in idx_sorted]
 
 
358
 
359
- return titles_sorted, abstracts_sorted, urls_sorted, scores_sorted
 
338
  titles = []
339
  abstracts = []
340
  urls = []
341
+ years = []
342
+ citations = []
343
  for p in papers:
344
  if p['title'] is not None and p['abstract'] is not None:
345
  titles.append(p['title'])
346
  abstracts.append(p['abstract'])
347
  urls.append(p['url'])
348
+ years.append(p['year'])
349
+ citations.append(p['citationCount'])
350
  if query_title == '':
351
  query = query_abs
352
  else:
 
359
  abstracts_sorted = [abstracts[x] for x in idx_sorted]
360
  scores_sorted = [scores[x] for x in idx_sorted]
361
  urls_sorted = [urls[x] for x in idx_sorted]
362
+ years_sorted = [years[x] for x in idx_sorted]
363
+ citations_sorted = [citations[x] for x in idx_sorted]
364
 
365
+ return titles_sorted, abstracts_sorted, urls_sorted, scores_sorted, years_sorted, citations_sorted
style.css CHANGED
@@ -44,7 +44,7 @@
44
  box-shadow: 1px 1px 1px rgba(0, 0, 0, 0.2);
45
  right: -4px;
46
  color: #FFF;
47
- font-size: 10px;
48
  line-height: 1.4;
49
  }
50
 
 
44
  box-shadow: 1px 1px 1px rgba(0, 0, 0, 0.2);
45
  right: -4px;
46
  color: #FFF;
47
+ font-size: 11px;
48
  line-height: 1.4;
49
  }
50