Spaces:
Runtime error
Runtime error
File size: 21,352 Bytes
6eff5e7 4bea31b b1499f3 05a7bdc 6eff5e7 7269ffa 580aef7 6eff5e7 580aef7 6eff5e7 580aef7 6eff5e7 300debd 7269ffa 6eff5e7 649e53c 7269ffa b5a0311 05a7bdc 6eff5e7 81ca652 7269ffa 81ca652 6eff5e7 300debd 7269ffa 0532283 81ca652 6eff5e7 a3a8d41 6eff5e7 b5a0311 648fab4 6eff5e7 81ca652 6eff5e7 81ca652 6eff5e7 e16ae7e 05a7bdc 649e53c 963bf46 7269ffa 05a7bdc 6eff5e7 091bb76 3448819 0532283 091bb76 0532283 648fab4 0532283 091bb76 0532283 5b4e16a 0532283 5b4e16a 091bb76 0532283 b5a0311 0532283 300debd 0532283 091bb76 3448819 0532283 091bb76 05a7bdc 649e53c 091bb76 b5a0311 091bb76 961f39c 091bb76 6eff5e7 091bb76 648fab4 b5a0311 091bb76 648fab4 091bb76 648fab4 091bb76 81ca652 091bb76 300debd 648fab4 300debd 649e53c 091bb76 961f39c b5a0311 091bb76 648fab4 649e53c 0532283 961f39c 091bb76 961f39c 0532283 6eff5e7 649e53c 6eff5e7 963bf46 6eff5e7 b5a0311 6eff5e7 b5a0311 6eff5e7 b5a0311 3448819 961f39c 48d609e 0532283 e16ae7e 4068146 b5a0311 6eff5e7 a6756ef 2fad322 961f39c 648fab4 2fad322 f582acb 648fab4 961f39c 4068146 961f39c 4068146 961f39c 4068146 6eff5e7 648fab4 6eff5e7 648fab4 6eff5e7 648fab4 6eff5e7 300debd 649e53c 091bb76 648fab4 dedd4f7 091bb76 3448819 091bb76 3448819 091bb76 dedd4f7 091bb76 961f39c 091bb76 dedd4f7 091bb76 961f39c 091bb76 300debd 091bb76 3448819 091bb76 3448819 091bb76 dedd4f7 091bb76 961f39c 091bb76 dedd4f7 091bb76 961f39c 091bb76 81ca652 300debd 81ca652 091bb76 3448819 091bb76 3448819 091bb76 dedd4f7 091bb76 961f39c 091bb76 dedd4f7 091bb76 961f39c 091bb76 961f39c 963bf46 648fab4 961f39c 648fab4 961f39c 091bb76 961f39c e16ae7e 961f39c e16ae7e 6eff5e7 961f39c 6eff5e7 961f39c 963bf46 649e53c 091bb76 6eff5e7 b5a0311 6eff5e7 091bb76 b5a0311 648fab4 300debd 649e53c 961f39c 300debd 7269ffa 091bb76 648fab4 6eff5e7 648fab4 e16ae7e 6eff5e7 e16ae7e 961f39c 6eff5e7 091bb76 6eff5e7 963bf46 6eff5e7 0532283 b5a0311 0532283 6eff5e7 e16ae7e 963bf46 e16ae7e b5a0311 e16ae7e 0532283 e16ae7e 4f8ef7b 6eff5e7 961f39c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import gradio as gr
import os
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import pickle
import nltk
nltk.download('punkt') # tokenizer
nltk.download('averaged_perceptron_tagger') # postagger
import time
from input_format import *
from score import *
# load document scoring model
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pretrained_model = 'allenai/specter'
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
doc_model = AutoModel.from_pretrained(pretrained_model)
doc_model.to(device)
# load sentence model
sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
sent_model.to(device)
def get_similar_paper(
abstract_text_input,
author_id_input,
results={}, # this state variable will be updated and returned
#progress=gr.Progress()
):
progress = gr.Progress()
num_papers_show = 10 # number of top papers to show from the reviewer
print('retrieving similar papers...')
start = time.time()
input_sentences = sent_tokenize(abstract_text_input)
# Get author papers from id
#progress(0.1, desc="Retrieving reviewer papers ...")
name, papers = get_text_from_author_id(author_id_input)
# Compute Doc-level affinity scores for the Papers
# print('computing document scores...')
#progress(0.5, desc="Computing document scores...")
# TODO detect duplicate papers?
titles, abstracts, paper_urls, doc_scores = compute_document_score(
doc_model,
tokenizer,
abstract_text_input,
papers,
batch=10
)
results = {
'name': name,
'titles': titles,
'abstracts': abstracts,
'urls': paper_urls,
'doc_scores': doc_scores
}
# Select top K choices of papers to show
titles = titles[:num_papers_show]
abstracts = abstracts[:num_papers_show]
doc_scores = doc_scores[:num_papers_show]
paper_urls = paper_urls[:num_papers_show]
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
end = time.time()
retrieval_time = end - start
print('paper retrieval complete in [%0.2f] seconds'%(retrieval_time))
progress(0.9, desc="Obtaining relevant information from the papers...")
print('obtaining highlights..')
start = time.time()
input_sentences = sent_tokenize(abstract_text_input)
num_sents = len(input_sentences)
for aa, (tt, ab, ds, url) in enumerate(zip(titles, abstracts, doc_scores, paper_urls)):
# Compute sent-level and phrase-level affinity scores for each papers
sent_ids, sent_scores, info, top_pairs_info = get_highlight_info(
sent_model,
abstract_text_input,
ab,
K=2 # top two sentences from the candidate
)
# get scores for each word in the format for Gradio Interpretation component
word_scores = dict()
for i in range(num_sents):
ww, ss = remove_spaces(info['all_words'], info[i]['scores'])
word_scores[str(i)] = {
"original": ab,
"interpretation": list(zip(ww, ss))
}
results[display_title[aa]] = {
'title': tt,
'abstract': ab,
'doc_score': '%0.3f'%ds,
'source_sentences': input_sentences,
'highlight': word_scores,
'top_pairs': top_pairs_info,
'url': url
}
end = time.time()
highlight_time = end - start
print('done in [%0.2f] seconds'%(highlight_time))
## Set up output elements
# set up elements to show
out = [
gr.update(choices=display_title, interactive=True), # set of papers (radio)
gr.update(choices=input_sentences, interactive=True) # submission sentences
]
# set up elements to visualize upfront
top_papers_show = 3 # number of top papers to show upfront
top_num_info_show = 2 # number of sentence pairs from each paper to show upfront
summary_out = []
for i in range(top_papers_show):
if i == 0:
out_tmp = [
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True),
gr.update(value="""#### Affinity Score: %0.3f
<div class="help-tip">
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
</div>
"""%doc_scores[i],
visible=True) # document affinity
]
else:
out_tmp = [
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True),
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
]
tp = results[display_title[i]]['top_pairs']
for j in range(top_num_info_show):
if i == 0 and j == 0:
out_tmp += [
gr.update(value="""Sentence Relevance:\n%0.3f
<div class="help-tip">
<p>Measures how similar the sentence pairs are.</p>
</div>"""%tp[j]['score'], visible=True), # sentence relevance
tp[j]['query']['original'],
tp[j]['query'],
tp[j]['candidate']['original'],
tp[j]['candidate']
]
else:
out_tmp += [
gr.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True), # sentence relevance
tp[j]['query']['original'],
tp[j]['query'],
tp[j]['candidate']['original'],
tp[j]['candidate']
]
summary_out += out_tmp
# add updates to the show more button
out = out + summary_out + [gr.update(visible=True)] # make show more button visible
assert(len(out) == (top_num_info_show * 5 + 2) * top_papers_show + 3)
out += [gr.update(value="""
<h3>Top three relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
For each paper, two sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
"""%(author_id_input, results['name']),
visible=True)] # result 1 description
out += [gr.update(visible=True), gr.update(visible=True)] # demarcation line between results
# progress status
out += [gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True)]
# result 2 description
desc = """
##### Click a paper by %s on the left (sorted by affinity scores), and a sentence from the submission on the right, to see which parts the paper are relevant.
"""%results['name']
out += [gr.update(value=desc)]
# add the search results to pass on to the Gradio State varaible
out += [results]
return tuple(out)
def show_more(info):
# show the interactive part of the app
return (
gr.update(visible=True), # description
gr.update(visible=True), # set of papers
gr.update(visible=True), # submission sentences
gr.update(visible=True), # title row
gr.update(visible=True), # affinity row
gr.update(visible=True), # highlight legend
)
def show_status():
# show search status field when search button is clicked
return gr.update(visible=True)
def update_name(author_id_input):
# update the name of the author based on the id input
name, _ = get_text_from_author_id(author_id_input)
return gr.update(value=name)
def change_output_highlight(selected_papers_radio, source_sent_choice, info={}):
# change the output highlight based on the sentence selected from the submission
if len(info.keys()) != 0: # if the info is not empty
source_sents = info[selected_papers_radio]['source_sentences']
highlights = info[selected_papers_radio]['highlight']
for i, s in enumerate(source_sents):
if source_sent_choice == s:
return highlights[str(i)]
else:
return
def change_paper(selected_papers_radio, info={}):
if len(info.keys()) != 0: # if the info is not empty
title = info[selected_papers_radio]['title']
abstract = info[selected_papers_radio]['abstract']
aff_score = info[selected_papers_radio]['doc_score']
highlights = info[selected_papers_radio]['highlight']
url = info[selected_papers_radio]['url']
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
aff_score_out = '##### Affinity Score: %s'%aff_score
return title_out, abstract, aff_score_out, highlights['0']
else:
return
with gr.Blocks(css='style.css') as demo:
info = gr.State({}) # cached search results as a State variable shared throughout
# Text description about the app and disclaimer
### TEXT Description
# General instruction
general_instruction = """
# R2P2: Reviewer TO Paper in Peer review
#### Who is it for?
It is for meta-reviewers, area chairs, program chairs, or anyone who oversees the submission-reviewer matching process in peer review for acadmeic conferences, journals, and grants.
<center><img src="file/tool.gif" width="50%" alt="general workflow"></center>
#### How does it help?
A typical meta-reviewer workflow lacks supportive information on **what makes the pre-selected candidate reviewers a good fit** for the submission. Only affinity scores between the reviewer and the paper are shown, without additional detail.
R2P2 provides more information about each reviewer. It searches for the most relevant papers among the reviewer's previous publications and highlights relevant parts within them.
"""
# TODO add instruction video link
# More details (video, addendum)
more_details_instruction = """Check out <a href="", target="_blank">this video</a> for a quick demo of what R2P2 is and how it can help. For more details (e.g., relevant work, privacy policy, disclaimer), refer to <a href="file/details.html", target="_blank">here</a>."""
gr.Markdown(general_instruction)
gr.HTML(more_details_instruction)
gr.Markdown("""---""")
### INPUT
with gr.Row() as input_row:
with gr.Column():
abstract_text_input = gr.Textbox(label='Submission Abstract', info='Paste in the abstract of the submission.')
with gr.Column():
with gr.Row():
author_id_input = gr.Textbox(label='Reviewer Profile Link (Semantic Scholar)', info="Paste in the reviewer's Semantic Scholar link")
with gr.Row():
name = gr.Textbox(label='Confirm Reviewer Name', info='This will be automatically updated based on the reviewer profile link above', interactive=False)
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
with gr.Row():
compute_btn = gr.Button('What Makes This a Good Match?')
with gr.Row():
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
### OVERVIEW
# Paper title, score, and top-ranking sentence pairs -- two sentence pairs per paper, three papers
## ONE BLOCK OF INFO FOR A SINGLE PAPER
## PAPER1
with gr.Row():
result1_desc = gr.Markdown(value='', visible=False)
# TODO hovering instructions
with gr.Row():
with gr.Column(scale=3):
paper_title1 = gr.Markdown(value='', visible=False)
with gr.Column(scale=1):
affinity1 = gr.Markdown(value='', visible=False)
with gr.Row() as rel1_1:
with gr.Column(scale=1):
sent_pair_score1_1 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1)
with gr.Column(scale=4):
sent_pair_candidate1_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1)
with gr.Row() as rel1_2:
with gr.Column(scale=1):
sent_pair_score1_2 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2)
with gr.Column(scale=4):
sent_pair_candidate1_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2)
with gr.Row(visible=False) as demarc1:
gr.Markdown(
"""---"""
)
## PAPER 2
with gr.Row():
with gr.Column(scale=3):
paper_title2 = gr.Markdown(value='', visible=False)
with gr.Column(scale=1):
affinity2 = gr.Markdown(value='', visible=False)
with gr.Row() as rel2_1:
with gr.Column(scale=1):
sent_pair_score2_1 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1)
with gr.Column(scale=4):
sent_pair_candidate2_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1)
with gr.Row() as rel2_2:
with gr.Column(scale=1):
sent_pair_score2_2 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2)
with gr.Column(scale=4):
sent_pair_candidate2_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2)
with gr.Row(visible=False) as demarc2:
gr.Markdown(
"""---"""
)
## PAPER 3
with gr.Row():
with gr.Column(scale=3):
paper_title3 = gr.Markdown(value='', visible=False)
with gr.Column(scale=1):
affinity3 = gr.Markdown(value='', visible=False)
with gr.Row() as rel3_1:
with gr.Column(scale=1):
sent_pair_score3_1 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1)
with gr.Column(scale=4):
sent_pair_candidate3_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1)
with gr.Row() as rel3_2:
with gr.Column(scale=1):
sent_pair_score3_2 = gr.Markdown(interactive=False, value='', visible=False)
with gr.Column(scale=4):
sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False)
sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2)
with gr.Column(scale=4):
sent_pair_candidate3_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
sent_pair_candidate3_2_hl = gr.components.Interpretation(sent_pair_candidate3_2)
## Show more button
with gr.Row():
see_more_rel_btn = gr.Button('Explore more', visible=False)
### PAPER INFORMATION
# Description for Explore More Section
with gr.Row():
result2_desc = gr.Markdown(value='', visible=False)
# Highlight description
hl_desc = """
**<span style="color:black;background-color:#DB7262;">Red</span>**: sentences simiar to the selected sentence from submission. Darker = more similar.
**<span style="color:black;background-color:#65B5E3;">Blue</span>**: phrases that appear in both sentences.
---
"""
# show multiple papers in radio check box to select from
paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=1):
selected_papers_radio = gr.Radio(
choices=[], # will be udpated with the button click
visible=False, # also will be updated with the button click
label='Top Relevant Papers from the Reviewer'
)
with gr.Column(scale=2):
# sentences from submission
source_sentences = gr.Radio(
choices=[],
visible=False,
label='Sentences from Submission Abstract',
)
with gr.Column(scale=3):
# selected paper and highlight
with gr.Row():
highlight_legend = gr.Markdown(value=hl_desc, visible=False)
with gr.Row(visible=False) as title_row:
paper_title = gr.Markdown(value='')
with gr.Row(visible=False) as aff_row:
affinity = gr.Markdown(value='')
with gr.Row():
# highlighted text from paper
highlight = gr.components.Interpretation(paper_abstract)
### EVENT LISTENERS
compute_btn.click(
fn=show_status,
inputs=[],
outputs=search_status
)
# retrieve similar papers and show top results
compute_btn.click(
fn=get_similar_paper,
inputs=[
abstract_text_input,
author_id_input,
info
],
outputs=[
selected_papers_radio,
source_sentences,
paper_title1, # paper info
affinity1,
sent_pair_score1_1,
sent_pair_source1_1,
sent_pair_source1_1_hl,
sent_pair_candidate1_1,
sent_pair_candidate1_1_hl,
sent_pair_score1_2,
sent_pair_source1_2,
sent_pair_source1_2_hl,
sent_pair_candidate1_2,
sent_pair_candidate1_2_hl,
paper_title2,
affinity2,
sent_pair_score2_1,
sent_pair_source2_1,
sent_pair_source2_1_hl,
sent_pair_candidate2_1,
sent_pair_candidate2_1_hl,
sent_pair_score2_2,
sent_pair_source2_2,
sent_pair_source2_2_hl,
sent_pair_candidate2_2,
sent_pair_candidate2_2_hl,
paper_title3,
affinity3,
sent_pair_score3_1,
sent_pair_source3_1,
sent_pair_source3_1_hl,
sent_pair_candidate3_1,
sent_pair_candidate3_1_hl,
sent_pair_score3_2,
sent_pair_source3_2,
sent_pair_source3_2_hl,
sent_pair_candidate3_2,
sent_pair_candidate3_2_hl,
see_more_rel_btn,
result1_desc,
demarc1,
demarc2,
search_status,
result2_desc,
info,
],
show_progress=True,
scroll_to_output=True
)
# Get more info (move to more interactive portion)
see_more_rel_btn.click(
fn=show_more,
inputs=info,
outputs=[
result2_desc,
selected_papers_radio,
source_sentences,
title_row,
aff_row,
highlight_legend,
]
)
# change highlight based on selected sentences from submission
source_sentences.change(
fn=change_output_highlight,
inputs=[
selected_papers_radio,
source_sentences,
info
],
outputs=highlight
)
# change paper to show based on selected papers
selected_papers_radio.change(
fn=change_paper,
inputs=[
selected_papers_radio,
info,
],
outputs= [
paper_title,
paper_abstract,
affinity,
highlight
]
)
if __name__ == "__main__":
demo.queue().launch() # add ?__theme=light to force light mode
|