Merge pull request #9 from joshuasundance-swca/anth
Browse files- README.md +20 -4
- docker-compose.yml +2 -2
- langchain-streamlit-demo/app.py +41 -25
- langchain-streamlit-demo/llm_stuff.py +35 -14
README.md
CHANGED
@@ -30,12 +30,26 @@ This `README` was written by [Claude 2](https://www.anthropic.com/index/claude-2
|
|
30 |
|
31 |
# Features
|
32 |
- Chat interface for talking to AI assistant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
- Streaming output of assistant responses
|
34 |
- Leverages LangChain for dialogue management
|
35 |
- Integrates with [LangSmith](https://smith.langchain.com) for tracing conversations
|
36 |
- Allows giving feedback on assistant's responses
|
37 |
|
38 |
# Usage
|
|
|
|
|
|
|
39 |
## With Docker (pull from Docker Hub)
|
40 |
1. Run in terminal: `docker run -p 7860:7860 joshuasundance/langchain-streamlit-demo:latest`
|
41 |
2. Open http://localhost:7860 in your browser.
|
@@ -46,7 +60,8 @@ This `README` was written by [Claude 2](https://www.anthropic.com/index/claude-2
|
|
46 |
3. Then open http://localhost:7860 in your browser.
|
47 |
|
48 |
# Configuration
|
49 |
-
-
|
|
|
50 |
- Optionally enter a LangSmith API key to enable conversation tracing
|
51 |
- Customize the assistant prompt and temperature
|
52 |
|
@@ -66,8 +81,9 @@ CI workflows in `.github/workflows` handle building and publishing the image.
|
|
66 |
- [Streamlit](https://streamlit.io)
|
67 |
- [LangChain](https://langchain.com)
|
68 |
- [LangSmith](https://smith.langchain.com)
|
|
|
|
|
|
|
69 |
|
70 |
# TODO
|
71 |
-
1.
|
72 |
-
2. Add support for Anthropic and Anyscale chat models
|
73 |
-
3. More customization / parameterization in sidebar
|
|
|
30 |
|
31 |
# Features
|
32 |
- Chat interface for talking to AI assistant
|
33 |
+
- Supports models from:
|
34 |
+
- [OpenAI](https://openai.com/)
|
35 |
+
- `gpt-3.5-turbo`
|
36 |
+
- `gpt-4`
|
37 |
+
- [Anthropic](https://www.anthropic.com/)
|
38 |
+
- `claude-instant-v1`
|
39 |
+
- `claude-2`
|
40 |
+
- [Anyscale Endpoints](https://endpoints.anyscale.com/)
|
41 |
+
- `meta-llama/Llama-2-7b-chat-hf`
|
42 |
+
- `meta-llama/Llama-2-13b-chat-hf`
|
43 |
+
- `meta-llama/Llama-2-70b-chat-hf`
|
44 |
- Streaming output of assistant responses
|
45 |
- Leverages LangChain for dialogue management
|
46 |
- Integrates with [LangSmith](https://smith.langchain.com) for tracing conversations
|
47 |
- Allows giving feedback on assistant's responses
|
48 |
|
49 |
# Usage
|
50 |
+
# Run on HuggingFace Spaces
|
51 |
+
[![Open HuggingFace Space](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo)
|
52 |
+
|
53 |
## With Docker (pull from Docker Hub)
|
54 |
1. Run in terminal: `docker run -p 7860:7860 joshuasundance/langchain-streamlit-demo:latest`
|
55 |
2. Open http://localhost:7860 in your browser.
|
|
|
60 |
3. Then open http://localhost:7860 in your browser.
|
61 |
|
62 |
# Configuration
|
63 |
+
- Select a model from the dropdown
|
64 |
+
- Enter an API key for the relevant provider
|
65 |
- Optionally enter a LangSmith API key to enable conversation tracing
|
66 |
- Customize the assistant prompt and temperature
|
67 |
|
|
|
81 |
- [Streamlit](https://streamlit.io)
|
82 |
- [LangChain](https://langchain.com)
|
83 |
- [LangSmith](https://smith.langchain.com)
|
84 |
+
- [OpenAI](https://openai.com/)
|
85 |
+
- [Anthropic](https://www.anthropic.com/)
|
86 |
+
- [Anyscale Endpoints](https://endpoints.anyscale.com/)
|
87 |
|
88 |
# TODO
|
89 |
+
1. More customization / parameterization in sidebar
|
|
|
|
docker-compose.yml
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
version: '3.8'
|
2 |
|
3 |
services:
|
4 |
-
streamlit-
|
5 |
-
image: streamlit-
|
6 |
build: .
|
7 |
ports:
|
8 |
- "${APP_PORT:-7860}:${APP_PORT:-7860}"
|
|
|
1 |
version: '3.8'
|
2 |
|
3 |
services:
|
4 |
+
langchain-streamlit-demo:
|
5 |
+
image: langchain-streamlit-demo:latest
|
6 |
build: .
|
7 |
ports:
|
8 |
- "${APP_PORT:-7860}:${APP_PORT:-7860}"
|
langchain-streamlit-demo/app.py
CHANGED
@@ -4,58 +4,76 @@ from langchain.callbacks.manager import tracing_v2_enabled
|
|
4 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
5 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
6 |
from langchain.schema.runnable import RunnableConfig
|
7 |
-
|
|
|
|
|
8 |
|
9 |
from llm_stuff import (
|
10 |
_DEFAULT_SYSTEM_PROMPT,
|
11 |
-
get_memory,
|
12 |
get_llm_chain,
|
13 |
StreamHandler,
|
14 |
feedback_component,
|
15 |
-
get_langsmith_client,
|
16 |
)
|
17 |
|
18 |
st.set_page_config(
|
19 |
-
page_title="
|
20 |
page_icon="🦜",
|
21 |
)
|
22 |
|
23 |
-
# "# Chat🦜🛠️"
|
24 |
# Initialize State
|
25 |
if "trace_link" not in st.session_state:
|
26 |
st.session_state.trace_link = None
|
27 |
if "run_id" not in st.session_state:
|
28 |
st.session_state.run_id = None
|
29 |
-
st.sidebar.markdown(
|
30 |
-
"""
|
31 |
-
# Menu
|
32 |
-
""",
|
33 |
-
)
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
langsmith_api_key = st.sidebar.text_input(
|
39 |
"LangSmith API Key (optional)",
|
40 |
type="password",
|
41 |
)
|
42 |
-
|
43 |
-
if
|
44 |
langsmith_project = st.sidebar.text_input(
|
45 |
"LangSmith Project Name",
|
46 |
value="langchain-streamlit-demo",
|
47 |
)
|
48 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
49 |
-
os.environ["LANGCHAIN_API_KEY"] =
|
50 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
51 |
os.environ["LANGCHAIN_PROJECT"] = langsmith_project
|
52 |
|
53 |
-
client =
|
54 |
else:
|
55 |
langsmith_project = None
|
56 |
client = None
|
57 |
|
58 |
-
if
|
59 |
system_prompt = (
|
60 |
st.sidebar.text_area(
|
61 |
"Custom Instructions",
|
@@ -75,15 +93,13 @@ if st.session_state.openai_api_key.startswith("sk-"):
|
|
75 |
help="Higher values give more random results.",
|
76 |
)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
chain = get_llm_chain(memory, system_prompt, temperature)
|
81 |
|
82 |
run_collector = RunCollectorCallbackHandler()
|
83 |
|
84 |
if st.sidebar.button("Clear message history"):
|
85 |
print("Clearing message history")
|
86 |
-
memory.clear()
|
87 |
st.session_state.trace_link = None
|
88 |
st.session_state.run_id = None
|
89 |
|
@@ -103,7 +119,7 @@ if st.session_state.openai_api_key.startswith("sk-"):
|
|
103 |
with st.chat_message(streamlit_type, avatar=avatar):
|
104 |
st.markdown(msg.content)
|
105 |
|
106 |
-
if st.session_state.trace_link:
|
107 |
st.sidebar.markdown(
|
108 |
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: 🛠️</button></a>',
|
109 |
unsafe_allow_html=True,
|
@@ -136,8 +152,8 @@ if st.session_state.openai_api_key.startswith("sk-"):
|
|
136 |
{"input": prompt},
|
137 |
config=runnable_config,
|
138 |
)["text"]
|
139 |
-
except AuthenticationError:
|
140 |
-
st.error("Please enter a valid
|
141 |
st.stop()
|
142 |
message_placeholder.markdown(full_response)
|
143 |
|
@@ -153,5 +169,5 @@ if st.session_state.openai_api_key.startswith("sk-"):
|
|
153 |
feedback_component(client)
|
154 |
|
155 |
else:
|
156 |
-
st.error("Please enter a valid
|
157 |
st.stop()
|
|
|
4 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
5 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
6 |
from langchain.schema.runnable import RunnableConfig
|
7 |
+
import openai
|
8 |
+
import anthropic
|
9 |
+
from langsmith.client import Client
|
10 |
|
11 |
from llm_stuff import (
|
12 |
_DEFAULT_SYSTEM_PROMPT,
|
|
|
13 |
get_llm_chain,
|
14 |
StreamHandler,
|
15 |
feedback_component,
|
|
|
16 |
)
|
17 |
|
18 |
st.set_page_config(
|
19 |
+
page_title="langchain-streamlit-demo",
|
20 |
page_icon="🦜",
|
21 |
)
|
22 |
|
|
|
23 |
# Initialize State
|
24 |
if "trace_link" not in st.session_state:
|
25 |
st.session_state.trace_link = None
|
26 |
if "run_id" not in st.session_state:
|
27 |
st.session_state.run_id = None
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
st.sidebar.markdown("# Menu")
|
30 |
+
models = [
|
31 |
+
"gpt-3.5-turbo",
|
32 |
+
"gpt-4",
|
33 |
+
"claude-instant-v1",
|
34 |
+
"claude-2",
|
35 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
36 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
37 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
38 |
+
]
|
39 |
+
model = st.sidebar.selectbox(label="Chat Model", options=models, index=0)
|
40 |
+
|
41 |
+
if model.startswith("gpt"):
|
42 |
+
provider = "OpenAI"
|
43 |
+
elif model.startswith("claude"):
|
44 |
+
provider = "Anthropic"
|
45 |
+
elif model.startswith("meta-llama"):
|
46 |
+
provider = "Anyscale"
|
47 |
+
else:
|
48 |
+
st.stop()
|
49 |
+
|
50 |
+
if not model:
|
51 |
+
st.error("Please select a model and provide an API key.", icon="❌")
|
52 |
+
st.stop()
|
53 |
+
|
54 |
+
provider_api_key = st.sidebar.text_input(f"{provider} API key", type="password")
|
55 |
|
56 |
langsmith_api_key = st.sidebar.text_input(
|
57 |
"LangSmith API Key (optional)",
|
58 |
type="password",
|
59 |
)
|
60 |
+
|
61 |
+
if langsmith_api_key.startswith("ls__"):
|
62 |
langsmith_project = st.sidebar.text_input(
|
63 |
"LangSmith Project Name",
|
64 |
value="langchain-streamlit-demo",
|
65 |
)
|
66 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
67 |
+
os.environ["LANGCHAIN_API_KEY"] = langsmith_api_key
|
68 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
69 |
os.environ["LANGCHAIN_PROJECT"] = langsmith_project
|
70 |
|
71 |
+
client = Client(api_key=langsmith_api_key)
|
72 |
else:
|
73 |
langsmith_project = None
|
74 |
client = None
|
75 |
|
76 |
+
if provider_api_key:
|
77 |
system_prompt = (
|
78 |
st.sidebar.text_area(
|
79 |
"Custom Instructions",
|
|
|
93 |
help="Higher values give more random results.",
|
94 |
)
|
95 |
|
96 |
+
chain = get_llm_chain(model, provider_api_key, system_prompt, temperature)
|
|
|
|
|
97 |
|
98 |
run_collector = RunCollectorCallbackHandler()
|
99 |
|
100 |
if st.sidebar.button("Clear message history"):
|
101 |
print("Clearing message history")
|
102 |
+
chain.memory.clear()
|
103 |
st.session_state.trace_link = None
|
104 |
st.session_state.run_id = None
|
105 |
|
|
|
119 |
with st.chat_message(streamlit_type, avatar=avatar):
|
120 |
st.markdown(msg.content)
|
121 |
|
122 |
+
if client and st.session_state.trace_link:
|
123 |
st.sidebar.markdown(
|
124 |
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: 🛠️</button></a>',
|
125 |
unsafe_allow_html=True,
|
|
|
152 |
{"input": prompt},
|
153 |
config=runnable_config,
|
154 |
)["text"]
|
155 |
+
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
156 |
+
st.error("Please enter a valid {provider} API key.", icon="❌")
|
157 |
st.stop()
|
158 |
message_placeholder.markdown(full_response)
|
159 |
|
|
|
169 |
feedback_component(client)
|
170 |
|
171 |
else:
|
172 |
+
st.error(f"Please enter a valid {provider} API key.", icon="❌")
|
173 |
st.stop()
|
langchain-streamlit-demo/llm_stuff.py
CHANGED
@@ -3,21 +3,14 @@ from datetime import datetime
|
|
3 |
import streamlit as st
|
4 |
from langchain import LLMChain
|
5 |
from langchain.callbacks.base import BaseCallbackHandler
|
6 |
-
from langchain.chat_models import ChatOpenAI
|
7 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
8 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
9 |
-
from langsmith.client import Client
|
10 |
from streamlit_feedback import streamlit_feedback
|
11 |
|
12 |
_DEFAULT_SYSTEM_PROMPT = "You are a helpful chatbot."
|
13 |
|
14 |
|
15 |
-
def get_langsmith_client():
|
16 |
-
return Client(
|
17 |
-
api_key=st.session_state.langsmith_api_key,
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
def get_memory() -> ConversationBufferMemory:
|
22 |
return ConversationBufferMemory(
|
23 |
chat_memory=StreamlitChatMessageHistory(key="langchain_messages"),
|
@@ -26,8 +19,39 @@ def get_memory() -> ConversationBufferMemory:
|
|
26 |
)
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def get_llm_chain(
|
30 |
-
|
|
|
31 |
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
|
32 |
temperature: float = 0.7,
|
33 |
) -> LLMChain:
|
@@ -42,11 +66,8 @@ def get_llm_chain(
|
|
42 |
("human", "{input}"),
|
43 |
],
|
44 |
).partial(time=lambda: str(datetime.now()))
|
45 |
-
|
46 |
-
|
47 |
-
streaming=True,
|
48 |
-
openai_api_key=st.session_state.openai_api_key,
|
49 |
-
)
|
50 |
return LLMChain(prompt=prompt, llm=llm, memory=memory or get_memory())
|
51 |
|
52 |
|
|
|
3 |
import streamlit as st
|
4 |
from langchain import LLMChain
|
5 |
from langchain.callbacks.base import BaseCallbackHandler
|
6 |
+
from langchain.chat_models import ChatOpenAI, ChatAnyscale, ChatAnthropic
|
7 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
8 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
9 |
from streamlit_feedback import streamlit_feedback
|
10 |
|
11 |
_DEFAULT_SYSTEM_PROMPT = "You are a helpful chatbot."
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def get_memory() -> ConversationBufferMemory:
|
15 |
return ConversationBufferMemory(
|
16 |
chat_memory=StreamlitChatMessageHistory(key="langchain_messages"),
|
|
|
19 |
)
|
20 |
|
21 |
|
22 |
+
def get_llm(
|
23 |
+
model: str,
|
24 |
+
provider_api_key: str,
|
25 |
+
temperature,
|
26 |
+
):
|
27 |
+
if model.startswith("gpt"):
|
28 |
+
return ChatOpenAI(
|
29 |
+
model=model,
|
30 |
+
openai_api_key=provider_api_key,
|
31 |
+
temperature=temperature,
|
32 |
+
streaming=True,
|
33 |
+
)
|
34 |
+
elif model.startswith("claude"):
|
35 |
+
return ChatAnthropic(
|
36 |
+
model_name=model,
|
37 |
+
anthropic_api_key=provider_api_key,
|
38 |
+
temperature=temperature,
|
39 |
+
streaming=True,
|
40 |
+
)
|
41 |
+
elif model.startswith("meta-llama"):
|
42 |
+
return ChatAnyscale(
|
43 |
+
model=model,
|
44 |
+
anyscale_api_key=provider_api_key,
|
45 |
+
temperature=temperature,
|
46 |
+
streaming=True,
|
47 |
+
)
|
48 |
+
else:
|
49 |
+
raise NotImplementedError(f"Unknown model {model}")
|
50 |
+
|
51 |
+
|
52 |
def get_llm_chain(
|
53 |
+
model: str,
|
54 |
+
provider_api_key: str,
|
55 |
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
|
56 |
temperature: float = 0.7,
|
57 |
) -> LLMChain:
|
|
|
66 |
("human", "{input}"),
|
67 |
],
|
68 |
).partial(time=lambda: str(datetime.now()))
|
69 |
+
memory = get_memory()
|
70 |
+
llm = get_llm(model, provider_api_key, temperature)
|
|
|
|
|
|
|
71 |
return LLMChain(prompt=prompt, llm=llm, memory=memory or get_memory())
|
72 |
|
73 |
|