Merge pull request #17 from joshuasundance-swca/dev
Browse files- docker-compose.yml +2 -0
- langchain-streamlit-demo/app.py +332 -216
- requirements.txt +2 -0
docker-compose.yml
CHANGED
@@ -4,6 +4,8 @@ services:
|
|
4 |
langchain-streamlit-demo:
|
5 |
image: langchain-streamlit-demo:latest
|
6 |
build: .
|
|
|
|
|
7 |
ports:
|
8 |
- "${APP_PORT:-7860}:${APP_PORT:-7860}"
|
9 |
command: [
|
|
|
4 |
langchain-streamlit-demo:
|
5 |
image: langchain-streamlit-demo:latest
|
6 |
build: .
|
7 |
+
env_file:
|
8 |
+
- .env
|
9 |
ports:
|
10 |
- "${APP_PORT:-7860}:${APP_PORT:-7860}"
|
11 |
command: [
|
langchain-streamlit-demo/app.py
CHANGED
@@ -1,43 +1,78 @@
|
|
1 |
import os
|
2 |
from datetime import datetime
|
|
|
3 |
from typing import Union
|
4 |
|
5 |
import anthropic
|
6 |
import openai
|
7 |
import streamlit as st
|
8 |
from langchain import LLMChain
|
|
|
9 |
from langchain.callbacks.base import BaseCallbackHandler
|
10 |
-
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
11 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
|
|
12 |
from langchain.chat_models import ChatOpenAI, ChatAnyscale, ChatAnthropic
|
13 |
-
from langchain.
|
|
|
14 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
15 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
16 |
-
from langchain.schema.
|
|
|
|
|
17 |
from langsmith.client import Client
|
18 |
from streamlit_feedback import streamlit_feedback
|
19 |
|
|
|
20 |
st.set_page_config(
|
21 |
page_title="langchain-streamlit-demo",
|
22 |
page_icon="π¦",
|
23 |
)
|
24 |
|
25 |
-
st.sidebar.markdown("# Menu")
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return_messages=True,
|
32 |
memory_key="chat_history",
|
33 |
)
|
34 |
|
35 |
-
_DEFAULT_SYSTEM_PROMPT = os.environ.get(
|
36 |
-
"DEFAULT_SYSTEM_PROMPT",
|
37 |
-
"You are a helpful chatbot.",
|
38 |
-
)
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"gpt-3.5-turbo": "OpenAI",
|
42 |
"gpt-4": "OpenAI",
|
43 |
"claude-instant-v1": "Anthropic",
|
@@ -46,248 +81,329 @@ _MODEL_DICT = {
|
|
46 |
"meta-llama/Llama-2-13b-chat-hf": "Anyscale Endpoints",
|
47 |
"meta-llama/Llama-2-70b-chat-hf": "Anyscale Endpoints",
|
48 |
}
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
model=model,
|
70 |
openai_api_key=provider_api_key,
|
71 |
temperature=temperature,
|
72 |
streaming=True,
|
73 |
max_tokens=max_tokens,
|
74 |
)
|
75 |
-
elif
|
76 |
-
|
77 |
model_name=model,
|
78 |
anthropic_api_key=provider_api_key,
|
79 |
temperature=temperature,
|
80 |
streaming=True,
|
81 |
max_tokens_to_sample=max_tokens,
|
82 |
)
|
83 |
-
elif
|
84 |
-
|
85 |
model=model,
|
86 |
anyscale_api_key=provider_api_key,
|
87 |
temperature=temperature,
|
88 |
streaming=True,
|
89 |
max_tokens=max_tokens,
|
90 |
)
|
91 |
-
else:
|
92 |
-
raise NotImplementedError(f"Unknown model {model}")
|
93 |
-
|
94 |
-
|
95 |
-
def get_llm_chain(
|
96 |
-
model: str,
|
97 |
-
provider_api_key: str,
|
98 |
-
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
|
99 |
-
temperature: float = _DEFAULT_TEMPERATURE,
|
100 |
-
max_tokens: int = _DEFAULT_MAX_TOKENS,
|
101 |
-
) -> LLMChain:
|
102 |
-
"""Return a basic LLMChain with memory."""
|
103 |
-
prompt = ChatPromptTemplate.from_messages(
|
104 |
-
[
|
105 |
-
(
|
106 |
-
"system",
|
107 |
-
system_prompt + "\nIt's currently {time}.",
|
108 |
-
),
|
109 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
110 |
-
("human", "{input}"),
|
111 |
-
],
|
112 |
-
).partial(time=lambda: str(datetime.now()))
|
113 |
-
llm = get_llm(model, provider_api_key, temperature, max_tokens)
|
114 |
-
return LLMChain(prompt=prompt, llm=llm, memory=_MEMORY)
|
115 |
-
|
116 |
-
|
117 |
-
class StreamHandler(BaseCallbackHandler):
|
118 |
-
def __init__(self, container, initial_text=""):
|
119 |
-
self.container = container
|
120 |
-
self.text = initial_text
|
121 |
-
|
122 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
123 |
-
self.text += token
|
124 |
-
self.container.markdown(self.text)
|
125 |
-
|
126 |
-
|
127 |
-
def feedback_component(client):
|
128 |
-
scores = {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}
|
129 |
-
if feedback := streamlit_feedback(
|
130 |
-
feedback_type="faces",
|
131 |
-
optional_text_label="[Optional] Please provide an explanation",
|
132 |
-
key=f"feedback_{st.session_state.run_id}",
|
133 |
-
):
|
134 |
-
score = scores[feedback["score"]]
|
135 |
-
feedback = client.create_feedback(
|
136 |
-
st.session_state.run_id,
|
137 |
-
feedback["type"],
|
138 |
-
score=score,
|
139 |
-
comment=feedback.get("text", None),
|
140 |
-
)
|
141 |
-
st.session_state.feedback = {"feedback_id": str(feedback.id), "score": score}
|
142 |
-
st.toast("Feedback recorded!", icon="π")
|
143 |
|
144 |
|
145 |
-
#
|
146 |
-
if
|
147 |
-
|
148 |
-
if "run_id" not in st.session_state:
|
149 |
-
st.session_state.run_id = None
|
150 |
-
if len(_STMEMORY.messages) == 0:
|
151 |
-
_STMEMORY.add_ai_message("Hello! I'm a helpful AI chatbot. Ask me a question!")
|
152 |
|
153 |
-
for msg in
|
154 |
st.chat_message(
|
155 |
msg.type,
|
156 |
avatar="π¦" if msg.type in ("ai", "assistant") else None,
|
157 |
).write(msg.content)
|
158 |
|
159 |
-
model = st.sidebar.selectbox(
|
160 |
-
label="Chat Model",
|
161 |
-
options=_SUPPORTED_MODELS,
|
162 |
-
index=_SUPPORTED_MODELS.index(_DEFAULT_MODEL),
|
163 |
-
)
|
164 |
-
provider = _MODEL_DICT[model]
|
165 |
-
|
166 |
-
|
167 |
-
def api_key_from_env(_provider: str) -> Union[str, None]:
|
168 |
-
if _provider == "OpenAI":
|
169 |
-
return os.environ.get("OPENAI_API_KEY")
|
170 |
-
elif _provider == "Anthropic":
|
171 |
-
return os.environ.get("ANTHROPIC_API_KEY")
|
172 |
-
elif _provider == "Anyscale Endpoints":
|
173 |
-
return os.environ.get("ANYSCALE_API_KEY")
|
174 |
-
elif _provider == "LANGSMITH":
|
175 |
-
return os.environ.get("LANGCHAIN_API_KEY")
|
176 |
-
else:
|
177 |
-
return None
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
st.sidebar.text_area(
|
205 |
-
"Custom Instructions",
|
206 |
-
_DEFAULT_SYSTEM_PROMPT,
|
207 |
-
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
208 |
-
)
|
209 |
-
.strip()
|
210 |
-
.replace("{", "{{")
|
211 |
-
.replace("}", "}}")
|
212 |
-
)
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
st.session_state.trace_link = None
|
218 |
-
st.session_state.run_id = None
|
219 |
-
|
220 |
-
temperature = st.sidebar.slider(
|
221 |
-
"Temperature",
|
222 |
-
min_value=_MIN_TEMPERATURE,
|
223 |
-
max_value=_MAX_TEMPERATURE,
|
224 |
-
value=_DEFAULT_TEMPERATURE,
|
225 |
-
help="Higher values give more random results.",
|
226 |
-
)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
min_value=_MIN_TOKENS,
|
231 |
-
max_value=_MAX_TOKENS,
|
232 |
-
value=_DEFAULT_MAX_TOKENS,
|
233 |
-
help="Higher values give longer results.",
|
234 |
-
)
|
235 |
-
chain = None
|
236 |
-
if provider_api_key:
|
237 |
-
chain = get_llm_chain(
|
238 |
-
model,
|
239 |
-
provider_api_key,
|
240 |
-
system_prompt,
|
241 |
-
temperature,
|
242 |
-
max_tokens,
|
243 |
-
)
|
244 |
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
st.session_state.
|
250 |
-
|
|
|
|
|
|
|
|
|
251 |
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
if prompt:
|
256 |
-
st.chat_message("user").write(prompt)
|
257 |
-
_reset_feedback()
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
callbacks=[run_collector, stream_handler],
|
264 |
-
tags=["Streamlit Chat"],
|
265 |
)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
285 |
|
286 |
else:
|
287 |
st.error(f"Please enter a valid {provider} API key.", icon="β")
|
288 |
-
|
289 |
-
if client and st.session_state.get("trace_link"):
|
290 |
-
st.sidebar.markdown(
|
291 |
-
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: π οΈ</button></a>',
|
292 |
-
unsafe_allow_html=True,
|
293 |
-
)
|
|
|
1 |
import os
|
2 |
from datetime import datetime
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
from typing import Union
|
5 |
|
6 |
import anthropic
|
7 |
import openai
|
8 |
import streamlit as st
|
9 |
from langchain import LLMChain
|
10 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
11 |
from langchain.callbacks.base import BaseCallbackHandler
|
12 |
+
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
13 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
from langchain.chat_models import ChatOpenAI, ChatAnyscale, ChatAnthropic
|
16 |
+
from langchain.document_loaders import PyPDFLoader
|
17 |
+
from langchain.embeddings import OpenAIEmbeddings
|
18 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
19 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
20 |
+
from langchain.schema.retriever import BaseRetriever
|
21 |
+
from langchain.text_splitter import CharacterTextSplitter
|
22 |
+
from langchain.vectorstores import FAISS
|
23 |
from langsmith.client import Client
|
24 |
from streamlit_feedback import streamlit_feedback
|
25 |
|
26 |
+
# --- Initialization ---
|
27 |
st.set_page_config(
|
28 |
page_title="langchain-streamlit-demo",
|
29 |
page_icon="π¦",
|
30 |
)
|
31 |
|
|
|
32 |
|
33 |
+
def st_init_null(*variable_names) -> None:
|
34 |
+
for variable_name in variable_names:
|
35 |
+
if variable_name not in st.session_state:
|
36 |
+
st.session_state[variable_name] = None
|
37 |
|
38 |
+
|
39 |
+
st_init_null(
|
40 |
+
"chain",
|
41 |
+
"client",
|
42 |
+
"doc_chain",
|
43 |
+
"llm",
|
44 |
+
"ls_tracer",
|
45 |
+
"retriever",
|
46 |
+
"run",
|
47 |
+
"run_id",
|
48 |
+
"trace_link",
|
49 |
+
)
|
50 |
+
|
51 |
+
# --- Memory ---
|
52 |
+
STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
53 |
+
MEMORY = ConversationBufferMemory(
|
54 |
+
chat_memory=STMEMORY,
|
55 |
return_messages=True,
|
56 |
memory_key="chat_history",
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# --- Callbacks ---
|
61 |
+
class StreamHandler(BaseCallbackHandler):
|
62 |
+
def __init__(self, container, initial_text=""):
|
63 |
+
self.container = container
|
64 |
+
self.text = initial_text
|
65 |
+
|
66 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
67 |
+
self.text += token
|
68 |
+
self.container.markdown(self.text)
|
69 |
+
|
70 |
+
|
71 |
+
RUN_COLLECTOR = RunCollectorCallbackHandler()
|
72 |
+
|
73 |
+
|
74 |
+
# --- Model Selection Helpers ---
|
75 |
+
MODEL_DICT = {
|
76 |
"gpt-3.5-turbo": "OpenAI",
|
77 |
"gpt-4": "OpenAI",
|
78 |
"claude-instant-v1": "Anthropic",
|
|
|
81 |
"meta-llama/Llama-2-13b-chat-hf": "Anyscale Endpoints",
|
82 |
"meta-llama/Llama-2-70b-chat-hf": "Anyscale Endpoints",
|
83 |
}
|
84 |
+
SUPPORTED_MODELS = list(MODEL_DICT.keys())
|
85 |
+
|
86 |
+
|
87 |
+
# --- Constants from Environment Variables ---
|
88 |
+
DEFAULT_MODEL = os.environ.get("DEFAULT_MODEL", "gpt-3.5-turbo")
|
89 |
+
DEFAULT_SYSTEM_PROMPT = os.environ.get(
|
90 |
+
"DEFAULT_SYSTEM_PROMPT",
|
91 |
+
"You are a helpful chatbot.",
|
92 |
+
)
|
93 |
+
MIN_TEMP = float(os.environ.get("MIN_TEMPERATURE", 0.0))
|
94 |
+
MAX_TEMP = float(os.environ.get("MAX_TEMPERATURE", 1.0))
|
95 |
+
DEFAULT_TEMP = float(os.environ.get("DEFAULT_TEMPERATURE", 0.7))
|
96 |
+
MIN_MAX_TOKENS = int(os.environ.get("MIN_MAX_TOKENS", 1))
|
97 |
+
MAX_MAX_TOKENS = int(os.environ.get("MAX_MAX_TOKENS", 100000))
|
98 |
+
DEFAULT_MAX_TOKENS = int(os.environ.get("DEFAULT_MAX_TOKENS", 1000))
|
99 |
+
DEFAULT_LANGSMITH_PROJECT = os.environ.get("LANGCHAIN_PROJECT")
|
100 |
+
PROVIDER_KEY_DICT = {
|
101 |
+
"OpenAI": os.environ.get("OPENAI_API_KEY", ""),
|
102 |
+
"Anthropic": os.environ.get("ANTHROPIC_API_KEY", ""),
|
103 |
+
"Anyscale Endpoints": os.environ.get("ANYSCALE_API_KEY", ""),
|
104 |
+
"LANGSMITH": os.environ.get("LANGCHAIN_API_KEY", ""),
|
105 |
+
}
|
106 |
+
OPENAI_API_KEY = PROVIDER_KEY_DICT["OpenAI"]
|
107 |
+
|
108 |
+
|
109 |
+
@st.cache_data
|
110 |
+
def get_retriever(uploaded_file_bytes: bytes) -> BaseRetriever:
|
111 |
+
with NamedTemporaryFile() as temp_file:
|
112 |
+
temp_file.write(uploaded_file_bytes)
|
113 |
+
temp_file.seek(0)
|
114 |
+
|
115 |
+
loader = PyPDFLoader(temp_file.name)
|
116 |
+
documents = loader.load()
|
117 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
118 |
+
texts = text_splitter.split_documents(documents)
|
119 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
120 |
+
db = FAISS.from_documents(texts, embeddings)
|
121 |
+
return db.as_retriever()
|
122 |
+
|
123 |
+
|
124 |
+
# --- Sidebar ---
|
125 |
+
sidebar = st.sidebar
|
126 |
+
with sidebar:
|
127 |
+
st.markdown("# Menu")
|
128 |
+
|
129 |
+
model = st.selectbox(
|
130 |
+
label="Chat Model",
|
131 |
+
options=SUPPORTED_MODELS,
|
132 |
+
index=SUPPORTED_MODELS.index(DEFAULT_MODEL),
|
133 |
+
)
|
134 |
+
|
135 |
+
provider = MODEL_DICT[model]
|
136 |
+
|
137 |
+
provider_api_key = PROVIDER_KEY_DICT.get(provider) or st.text_input(
|
138 |
+
f"{provider} API key",
|
139 |
+
type="password",
|
140 |
+
)
|
141 |
+
|
142 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
143 |
+
|
144 |
+
openai_api_key = (
|
145 |
+
provider_api_key
|
146 |
+
if provider == "OpenAI"
|
147 |
+
else OPENAI_API_KEY
|
148 |
+
or st.sidebar.text_input("OpenAI API Key: ", type="password")
|
149 |
+
)
|
150 |
+
|
151 |
+
if uploaded_file:
|
152 |
+
if openai_api_key:
|
153 |
+
st.session_state.retriever = get_retriever(
|
154 |
+
uploaded_file_bytes=uploaded_file.getvalue(),
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
st.error("Please enter a valid OpenAI API key.", icon="β")
|
158 |
+
|
159 |
+
document_chat = st.checkbox(
|
160 |
+
"Document Chat",
|
161 |
+
value=False,
|
162 |
+
help="Uploaded document will provide context for the chat.",
|
163 |
+
)
|
164 |
+
|
165 |
+
if st.button("Clear message history"):
|
166 |
+
STMEMORY.clear()
|
167 |
+
st.session_state.trace_link = None
|
168 |
+
st.session_state.run_id = None
|
169 |
+
|
170 |
+
# --- Advanced Options ---
|
171 |
+
with st.expander("Advanced Options", expanded=False):
|
172 |
+
st.markdown("## Feedback Scale")
|
173 |
+
use_faces = st.toggle(label="`Thumbs` β `Faces`", value=False)
|
174 |
+
feedback_option = "faces" if use_faces else "thumbs"
|
175 |
+
|
176 |
+
system_prompt = (
|
177 |
+
st.text_area(
|
178 |
+
"Custom Instructions",
|
179 |
+
DEFAULT_SYSTEM_PROMPT,
|
180 |
+
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
181 |
+
)
|
182 |
+
.strip()
|
183 |
+
.replace("{", "{{")
|
184 |
+
.replace("}", "}}")
|
185 |
+
)
|
186 |
+
temperature = st.slider(
|
187 |
+
"Temperature",
|
188 |
+
min_value=MIN_TEMP,
|
189 |
+
max_value=MAX_TEMP,
|
190 |
+
value=DEFAULT_TEMP,
|
191 |
+
help="Higher values give more random results.",
|
192 |
+
)
|
193 |
+
|
194 |
+
max_tokens = st.slider(
|
195 |
+
"Max Tokens",
|
196 |
+
min_value=MIN_MAX_TOKENS,
|
197 |
+
max_value=MAX_MAX_TOKENS,
|
198 |
+
value=DEFAULT_MAX_TOKENS,
|
199 |
+
help="Higher values give longer results.",
|
200 |
+
)
|
201 |
+
|
202 |
+
# --- API Keys ---
|
203 |
+
LANGSMITH_API_KEY = PROVIDER_KEY_DICT.get("LANGSMITH") or st.text_input(
|
204 |
+
"LangSmith API Key (optional)",
|
205 |
+
type="password",
|
206 |
+
)
|
207 |
+
LANGSMITH_PROJECT = DEFAULT_LANGSMITH_PROJECT or st.text_input(
|
208 |
+
"LangSmith Project Name",
|
209 |
+
value="langchain-streamlit-demo",
|
210 |
+
)
|
211 |
+
if st.session_state.client is None and LANGSMITH_API_KEY:
|
212 |
+
st.session_state.client = Client(
|
213 |
+
api_url="https://api.smith.langchain.com",
|
214 |
+
api_key=LANGSMITH_API_KEY,
|
215 |
+
)
|
216 |
+
st.session_state.ls_tracer = LangChainTracer(
|
217 |
+
project_name=LANGSMITH_PROJECT,
|
218 |
+
client=st.session_state.client,
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
# --- LLM Instantiation ---
|
223 |
+
if provider_api_key:
|
224 |
+
if provider == "OpenAI":
|
225 |
+
st.session_state.llm = ChatOpenAI(
|
226 |
model=model,
|
227 |
openai_api_key=provider_api_key,
|
228 |
temperature=temperature,
|
229 |
streaming=True,
|
230 |
max_tokens=max_tokens,
|
231 |
)
|
232 |
+
elif provider == "Anthropic":
|
233 |
+
st.session_state.llm = ChatAnthropic(
|
234 |
model_name=model,
|
235 |
anthropic_api_key=provider_api_key,
|
236 |
temperature=temperature,
|
237 |
streaming=True,
|
238 |
max_tokens_to_sample=max_tokens,
|
239 |
)
|
240 |
+
elif provider == "Anyscale Endpoints":
|
241 |
+
st.session_state.llm = ChatAnyscale(
|
242 |
model=model,
|
243 |
anyscale_api_key=provider_api_key,
|
244 |
temperature=temperature,
|
245 |
streaming=True,
|
246 |
max_tokens=max_tokens,
|
247 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
|
250 |
+
# --- Chat History ---
|
251 |
+
if len(STMEMORY.messages) == 0:
|
252 |
+
STMEMORY.add_ai_message("Hello! I'm a helpful AI chatbot. Ask me a question!")
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
for msg in STMEMORY.messages:
|
255 |
st.chat_message(
|
256 |
msg.type,
|
257 |
avatar="π¦" if msg.type in ("ai", "assistant") else None,
|
258 |
).write(msg.content)
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
+
# --- Current Chat ---
|
262 |
+
if st.session_state.llm:
|
263 |
+
# --- Document Chat ---
|
264 |
+
if st.session_state.retriever:
|
265 |
+
# st.session_state.doc_chain = ConversationalRetrievalChain.from_llm(
|
266 |
+
# st.session_state.llm,
|
267 |
+
# st.session_state.retriever,
|
268 |
+
# memory=MEMORY,
|
269 |
+
# )
|
270 |
+
|
271 |
+
st.session_state.doc_chain = RetrievalQA.from_chain_type(
|
272 |
+
llm=st.session_state.llm,
|
273 |
+
chain_type="stuff",
|
274 |
+
retriever=st.session_state.retriever,
|
275 |
+
memory=MEMORY,
|
276 |
+
)
|
277 |
|
278 |
+
else:
|
279 |
+
# --- Regular Chat ---
|
280 |
+
chat_prompt = ChatPromptTemplate.from_messages(
|
281 |
+
[
|
282 |
+
(
|
283 |
+
"system",
|
284 |
+
system_prompt + "\nIt's currently {time}.",
|
285 |
+
),
|
286 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
287 |
+
("human", "{query}"),
|
288 |
+
],
|
289 |
+
).partial(time=lambda: str(datetime.now()))
|
290 |
+
st.session_state.chain = LLMChain(
|
291 |
+
prompt=chat_prompt,
|
292 |
+
llm=st.session_state.llm,
|
293 |
+
memory=MEMORY,
|
294 |
+
)
|
295 |
|
296 |
+
# --- Chat Input ---
|
297 |
+
prompt = st.chat_input(placeholder="Ask me a question!")
|
298 |
+
if prompt:
|
299 |
+
st.chat_message("user").write(prompt)
|
300 |
+
feedback_update = None
|
301 |
+
feedback = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
# --- Chat Output ---
|
304 |
+
with st.chat_message("assistant", avatar="π¦"):
|
305 |
+
callbacks = [RUN_COLLECTOR]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
if st.session_state.ls_tracer:
|
308 |
+
callbacks.append(st.session_state.ls_tracer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
use_document_chat = all(
|
311 |
+
[
|
312 |
+
document_chat,
|
313 |
+
st.session_state.doc_chain,
|
314 |
+
st.session_state.retriever,
|
315 |
+
],
|
316 |
+
)
|
317 |
|
318 |
+
try:
|
319 |
+
if use_document_chat:
|
320 |
+
st_handler = StreamlitCallbackHandler(st.container())
|
321 |
+
callbacks.append(st_handler)
|
322 |
+
full_response = st.session_state.doc_chain(
|
323 |
+
{"query": prompt},
|
324 |
+
callbacks=callbacks,
|
325 |
+
tags=["Streamlit Chat"],
|
326 |
+
return_only_outputs=True,
|
327 |
+
)[st.session_state.doc_chain.output_key]
|
328 |
+
st_handler._complete_current_thought()
|
329 |
+
st.markdown(full_response)
|
330 |
+
else:
|
331 |
+
message_placeholder = st.empty()
|
332 |
+
stream_handler = StreamHandler(message_placeholder)
|
333 |
+
callbacks.append(stream_handler)
|
334 |
+
full_response = st.session_state.chain(
|
335 |
+
{"query": prompt},
|
336 |
+
callbacks=callbacks,
|
337 |
+
tags=["Streamlit Chat"],
|
338 |
+
return_only_outputs=True,
|
339 |
+
)[st.session_state.chain.output_key]
|
340 |
+
message_placeholder.markdown(full_response)
|
341 |
+
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
342 |
+
st.error(
|
343 |
+
f"Please enter a valid {provider} API key.",
|
344 |
+
icon="β",
|
345 |
+
)
|
346 |
+
full_response = None
|
347 |
+
if full_response:
|
348 |
+
# --- Tracing ---
|
349 |
+
if st.session_state.client:
|
350 |
+
st.session_state.run = RUN_COLLECTOR.traced_runs[0]
|
351 |
+
st.session_state.run_id = st.session_state.run.id
|
352 |
+
RUN_COLLECTOR.traced_runs = []
|
353 |
+
wait_for_all_tracers()
|
354 |
+
st.session_state.trace_link = st.session_state.client.read_run(
|
355 |
+
st.session_state.run_id,
|
356 |
+
).url
|
357 |
+
if st.session_state.trace_link:
|
358 |
+
with sidebar:
|
359 |
+
st.markdown(
|
360 |
+
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: π οΈ</button></a>',
|
361 |
+
unsafe_allow_html=True,
|
362 |
+
)
|
363 |
|
364 |
+
# --- Feedback ---
|
365 |
+
if st.session_state.client and st.session_state.run_id:
|
366 |
+
feedback = streamlit_feedback(
|
367 |
+
feedback_type=feedback_option,
|
368 |
+
optional_text_label="[Optional] Please provide an explanation",
|
369 |
+
key=f"feedback_{st.session_state.run_id}",
|
370 |
+
)
|
371 |
|
372 |
+
# Define score mappings for both "thumbs" and "faces" feedback systems
|
373 |
+
score_mappings: dict[str, dict[str, Union[int, float]]] = {
|
374 |
+
"thumbs": {"π": 1, "π": 0},
|
375 |
+
"faces": {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0},
|
376 |
+
}
|
377 |
|
378 |
+
# Get the score mapping based on the selected feedback option
|
379 |
+
scores = score_mappings[feedback_option]
|
|
|
|
|
|
|
380 |
|
381 |
+
if feedback:
|
382 |
+
# Get the score from the selected feedback option's score mapping
|
383 |
+
score = scores.get(
|
384 |
+
feedback["score"],
|
|
|
|
|
385 |
)
|
386 |
+
|
387 |
+
if score is not None:
|
388 |
+
# Formulate feedback type string incorporating the feedback option
|
389 |
+
# and score value
|
390 |
+
feedback_type_str = f"{feedback_option} {feedback['score']}"
|
391 |
+
|
392 |
+
# Record the feedback with the formulated feedback type string
|
393 |
+
# and optional comment
|
394 |
+
feedback_record = st.session_state.client.create_feedback(
|
395 |
+
st.session_state.run_id,
|
396 |
+
feedback_type_str,
|
397 |
+
score=score,
|
398 |
+
comment=feedback.get("text"),
|
399 |
+
)
|
400 |
+
# feedback = {
|
401 |
+
# "feedback_id": str(feedback_record.id),
|
402 |
+
# "score": score,
|
403 |
+
# }
|
404 |
+
st.toast("Feedback recorded!", icon="π")
|
405 |
+
else:
|
406 |
+
st.warning("Invalid feedback score.")
|
407 |
|
408 |
else:
|
409 |
st.error(f"Please enter a valid {provider} API key.", icon="β")
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
anthropic==0.3.11
|
|
|
2 |
langchain==0.0.293
|
3 |
langsmith==0.0.38
|
4 |
openai==0.28.0
|
|
|
5 |
streamlit==1.26.0
|
6 |
streamlit-feedback==0.1.2
|
7 |
tiktoken==0.5.1
|
|
|
1 |
anthropic==0.3.11
|
2 |
+
faiss-cpu==1.7.4
|
3 |
langchain==0.0.293
|
4 |
langsmith==0.0.38
|
5 |
openai==0.28.0
|
6 |
+
pypdf==3.16.1
|
7 |
streamlit==1.26.0
|
8 |
streamlit-feedback==0.1.2
|
9 |
tiktoken==0.5.1
|