File size: 14,198 Bytes
bbc89f6
 
 
 
 
 
 
a1e077b
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e077b
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc89f6
 
 
 
 
 
 
 
 
 
a1e077b
 
 
bbc89f6
a1e077b
 
 
b16249c
 
 
 
 
 
a1e077b
 
bbc89f6
a1e077b
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e077b
 
bbc89f6
 
 
 
 
 
 
 
b16249c
 
 
 
 
 
 
 
bbc89f6
a1e077b
bbc89f6
 
 
a1e077b
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc89f6
a1e077b
 
 
 
 
 
 
 
bbc89f6
 
 
a1e077b
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6ca6b
bbc89f6
 
 
 
 
 
 
7a6ca6b
 
bbc89f6
 
 
 
 
 
7a6ca6b
 
 
 
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6ca6b
bbc89f6
 
7a6ca6b
bbc89f6
 
 
 
 
a1e077b
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e077b
 
 
 
 
 
 
 
bbc89f6
 
 
 
a1e077b
bbc89f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b16249c
 
 
 
 
 
 
 
bbc89f6
b16249c
 
bbc89f6
b16249c
bbc89f6
 
 
 
 
 
a1e077b
bbc89f6
 
 
 
 
 
a1e077b
bbc89f6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import gradio as gr

import os
import json
import zipfile
from pathlib import Path

from database import get_user_credits, update_user_credits, get_lora_models_info, get_user_lora_models
from services.image_generation import generate_image
from services.train_lora import lora_pipeline
from utils.image_utils import url_to_pil_image

lora_models = get_lora_models_info()

if not isinstance(lora_models, list):
    raise ValueError("Expected loras_models to be a list of dictionaries.")

login_css_path = Path(__file__).parent / 'static/css/login.css'
main_css_path = Path(__file__).parent / 'static/css/main.css'
landing_html_path = Path(__file__).parent / 'static/html/landing.html'
main_header_path = Path(__file__).parent / 'static/html/main_header.html'

if login_css_path.is_file():  # Check if the file exists
    with login_css_path.open() as file:
       login_css = file.read()

if main_css_path.is_file():  # Check if the file exists
    with main_css_path.open() as file:
        main_css = file.read()
        
if landing_html_path.is_file():
    with landing_html_path.open() as file:
        landin_page = file.read()

if main_header_path.is_file():
    with main_header_path.open() as file:
        main_header = file.read()

def load_user_models(request: gr.Request):
    user = request.session.get('user')
    print(user)
    if user:
        user_models = get_user_lora_models(user['id'])
        if user_models:
            return [(item.get("image_url", "assets/logo.jpg"), item["lora_name"]) for item in user_models]
    return []

def update_selection(evt: gr.SelectData, gallery_type: str, width, height):
    if gallery_type == "user":
        selected_lora = {"lora_name": "custom", "trigger_word": "custom"}
    else:
        selected_lora = lora_models[evt.index]
    new_placeholder = f"Ingresa un prompt para tu modelo {selected_lora['lora_name']}"
    trigger_word = selected_lora["trigger_word"]
    updated_text = f"#### Palabra clave: {trigger_word} ✨"
    
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width, height = 768, 1024
        elif selected_lora["aspect"] == "landscape":
            width, height = 1024, 768

    return gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, gallery_type

def compress_and_train(request: gr.Request, files, model_name, trigger_word, train_steps, lora_rank, batch_size, learning_rate):
    if not files:
        return "No hay imágenes. Sube algunas imágenes para poder entrenar."
    
    user = request.session.get('user')
    
    _, training_credits = get_user_credits(user['id'])
    
    if training_credits <= 0:
        raise gr.Error("Ya no tienes creditos disponibles. Compra para continuar.")
    
    if not user:
        raise gr.Error("User not authenticated. Please log in.")

    user_id = user['id']
    # Create a directory in the user's home folder
    output_dir = os.path.expanduser("~/gradio_training_data")
    os.makedirs(output_dir, exist_ok=True)

    # Create a zip file in the output directory
    zip_path = os.path.join(output_dir, "training_data.zip")
    
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for file_info in files:
            file_path = file_info[0]  # The first element of the tuple is the file path
            file_name = os.path.basename(file_path)
            zipf.write(file_path, file_name)
    
    print(f"Zip file created at: {zip_path}")
        
    print(f'[INFO] Procesando {trigger_word}')
    # Now call the train_lora function with the zip file path
    result = lora_pipeline(user_id,
                            zip_path, 
                            model_name, 
                            trigger_word=trigger_word, 
                            steps=train_steps, 
                            lora_rank=lora_rank, 
                            batch_size=batch_size, 
                            autocaption=True, 
                            learning_rate=learning_rate)
    
    new_training_credits = training_credits - 1
    update_user_credits(user['id'], user['generation_credits'], new_training_credits)
    
    # Update session data
    user['training_credits'] = new_training_credits
    request.session['user'] = user
    
    return gr.Info("Tu modelo esta entrenando, En unos 20 minutos estará listo para que lo pruebes en 'Generación'."), new_training_credits
            
def run_lora(request: gr.Request, prompt, cfg_scale, steps, selected_index, selected_gallery, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    user = request.session.get('user')
    if not user:
        raise gr.Error("User not authenticated. Please log in.")
    lora_models = get_user_lora_models(user['id'])
    print(f'Selected gallery: {selected_gallery}')
    if selected_gallery == "user":
        lora_models = get_user_lora_models(user['id'])
        print('Using user models')
    else:  # public
        lora_models = get_lora_models_info()
        print('Using public models')
    print(f'Selected index: {selected_index}')
    if selected_index is None:
        selected_lora = None
    else:
        selected_lora = lora_models[selected_index]

    generation_credits, _ = get_user_credits(user['id'])
    if selected_lora:
        print(f"Selected Lora: {selected_lora['lora_name']}")
        model_name = selected_lora['lora_name']
        use_default = False
    else:
        model_name = "black-forest-labs/flux-pro"
        print(f"Using default Lora: {model_name}")
        use_default = True
    if generation_credits <= 0:
        raise gr.Error("Ya no tienes creditos disponibles. Compra para continuar.")
    
    image_url = generate_image(model_name, prompt, steps, cfg_scale, width, height, lora_scale, progress, use_default)
    image = url_to_pil_image(image_url)
    
    # Update user's credits
    new_generation_credits = generation_credits - 1
    update_user_credits(user['id'], new_generation_credits, user['train_credits'])
    
    # Update session data
    user['generation_credits'] = new_generation_credits
    request.session['user'] = user
    
    print(f"Generation credits remaining: {new_generation_credits}")
    
    return image, new_generation_credits

def display_credits(request: gr.Request):
    user = request.session.get('user')
    if user:
        generation_credits, train_credits = get_user_credits(user['id'])
        return generation_credits, train_credits
    return 0, 0

def load_greet_and_credits(request: gr.Request):
    greeting = greet(request)
    generation_credits, train_credits = display_credits(request)
    return greeting, generation_credits, train_credits
    
def greet(request: gr.Request):
    user = request.session.get('user')
    if user:
        with gr.Column():  
            with gr.Row():
                greeting = f"Hola 👋 {user['given_name']}!"
            return f"{greeting}\n"
    return "OBTU AI. Please log in."

with gr.Blocks(theme=gr.themes.Soft(), css=login_css) as login_demo:
    with gr.Column(elem_id="google-btn-container", elem_classes="google-btn-container svelte-vt1mxs gap"):
        btn = gr.Button("Iniciar Sesion con Google", elem_classes="login-with-google-btn")
    _js_redirect = """
    () => {
        url = '/login' + window.location.search;
        window.open(url, '_blank');
    }
    """
    btn.click(None, js=_js_redirect)
    gr.HTML(landin_page)
        

header = '<script src="https://cdn.lordicon.com/lordicon.js"></script>'

with gr.Blocks(theme=gr.themes.Soft(), head=header, css=main_css) as main_demo:
    title = gr.HTML(main_header)
    
    with gr.Column(elem_id="logout-btn-container"):
        gr.Button("Salir", link="/logout", elem_id="logout_btn")

    
    greetings = gr.Markdown("Loading user information...")
    
    selected_index = gr.State(None)
    
    with gr.Row():
        with gr.Column():
            generation_credits_display = gr.Number(label="Generation Credits", precision=0, interactive=False)
        with gr.Column():
            train_credits_display = gr.Number(label="Training Credits", precision=0, interactive=False)
        with gr.Column():
            gr.Button("Comprar Creditos 💳", link="/buy_credits")
    

    with gr.Tabs():
        with gr.TabItem('Generacion'):
            with gr.Row():
                with gr.Column(scale=3):
                    prompt = gr.Textbox(label="Prompt", 
                                        lines=1, 
                                        placeholder="Ingresa un prompt para empezar a crear", 
                                        info='Algunos modelos publicos pueden demorar un poco más dependiendo de la disponibilidad que tengan en los servidores.')
                with gr.Column(scale=1, elem_id="gen_column"):
                    generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            
            with gr.Row():
                with gr.Column(scale=4):
                    result = gr.Image(label="Imagen Generada")
                
                with gr.Column(scale=3):
                    with gr.Accordion("Tus Modelos"):
                        user_model_gallery = gr.Gallery(
                            label="Galeria de Modelos",
                            allow_preview=False,
                            columns=3,
                            elem_id="galley"
                        )
                        
                    with gr.Accordion("Modelos Publicos"):
                        selected_info = gr.Markdown("")
                        gallery = gr.Gallery(
                            [(item["image_url"], item["model_name"]) for item in lora_models],
                            label="Galeria de Modelos Publicos",
                            allow_preview=False,
                            columns=3,
                            elem_id="gallery"
                        )
            gallery_type = gr.State("Public")

            with gr.Accordion("Configuracion Avanzada", open=False):
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)

            gallery.select(
                update_selection,
                inputs=[gr.State("public"), width, height],
                outputs=[prompt, selected_info, selected_index, width, height, gallery_type]
            )
            
            user_model_gallery.select(
                update_selection,
                inputs=[gr.State("user"), width, height],
                outputs=[prompt, selected_info, selected_index, width, height, gallery_type]
            )
            gr.on(
                triggers=[generate_button.click, prompt.submit],
                fn=run_lora,
                inputs=[prompt, cfg_scale, steps, selected_index, gallery_type, width, height, lora_scale],
                outputs=[result, generation_credits_display]
            )

        with gr.TabItem("Training"):
            gr.Markdown("# Entrena tu propio modelo 🧠")
            gr.Markdown("En esta seccion podes entrenar tu propio modelo a partir de tus imagenes.")
            with gr.Row():
                with gr.Column():
                    train_dataset = gr.Gallery(columns=4, interactive=True, label="Tus Imagenes")
                    model_name = gr.Textbox(label="Nombre del Modelo",)
                    trigger_word = gr.Textbox(label="Palabra clave", 
                                              info="Esta seria una palabra clave para luego indicar al modelo cuando debe usar estas nuevas capacidad es que le vamos a ensenar", 
                                              )
                    train_button = gr.Button("Comenzar Training")
            with gr.Accordion("Configuracion Avanzada", open=False):
                train_steps = gr.Slider(label="Training Steps", minimum=100, maximum=10000, step=100, value=1000)
                lora_rank = gr.Number(label='lora_rank', value=16)
                batch_size = gr.Number(label='batch_size', value=1)
                learning_rate = gr.Number(label='learning_rate', value=0.0004)
                training_status = gr.Textbox(label="Training Status")
            
            def fake_train(train_dataset, model_name, trigger_word, train_steps, lora_rank, batch_size, learning_rate):
                print(f'fake training for test')
                new_training_credits = 0
                if new_training_credits <= 0:
                    raise gr.Error("Ya no tienes creditos disponibles. Compra para continuar.")
                return gr.Info("Tu modelo esta entrenando, En unos 20 minutos estará listo para que lo pruebes en 'Generación'."), new_training_credits
                
            train_button.click(
                #compress_and_train,
                fake_train,
                inputs=[train_dataset, model_name, trigger_word, train_steps, lora_rank, batch_size, learning_rate],
                outputs=[training_status,train_credits_display]
            )
                
                
        #main_demo.load(greet, None, title)
        #main_demo.load(greet, None, greetings)
        #main_demo.load((greet, display_credits), None, [greetings, generation_credits_display, train_credits_display])
        main_demo.load(load_user_models, None, user_model_gallery)
        main_demo.load(load_greet_and_credits, None, [greetings, generation_credits_display, train_credits_display])



# TODO:
'''
- resolver mostrar bien los nombres de los modelos en la galeria
- Training con creditos.
- Stripe(?)
- Mejorar boton de login/logout
- Retoque landing page
'''