joselobenitezg commited on
Commit
5e4b3a1
·
1 Parent(s): c82f96b
Files changed (7) hide show
  1. .gitignore +4 -0
  2. Learn_PyTorch_ImageSegmentation.ipynb +0 -0
  3. README.md +56 -1
  4. model.py +30 -0
  5. requirements.txt +3 -0
  6. train.py +55 -0
  7. utils.py +104 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__
2
+ flagged
3
+ *.pt
4
+ DS_Store
Learn_PyTorch_ImageSegmentation.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -9,4 +9,59 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  ---
11
 
12
+ # Pytorch Image Segmentation
13
+
14
+ ## This repo contains the code for training a U-Net model for image segmentation on the Human Segmentation Dataset.
15
+
16
+ <a href="https://colab.research.google.com/github/josebenitezg/Pytorch-Image-Segmentation/blob/main/Learn_PyTorch_ImageSegmentation.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
17
+ </a>
18
+
19
+ ## Usage :nut_and_bolt:
20
+
21
+ 1. Clone this repo
22
+
23
+ ```
24
+ git clone https://github.com/josebenitezg/Pytorch-Image-Segmentation
25
+ ```
26
+
27
+ 2. Create a virtual enviroment
28
+
29
+ ```
30
+ python -m venv env
31
+ ```
32
+
33
+ 3. Activate virtual enviroment
34
+
35
+ - for linux
36
+
37
+ ```
38
+ source env/bin/activate
39
+ ```
40
+
41
+ - for windows
42
+
43
+ ```
44
+ env\Scripts\Activate.bat
45
+ ```
46
+
47
+ 4. Install requirements
48
+
49
+ ```
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+ 5. Train the model
54
+
55
+ ```
56
+ python train.py
57
+ ```
58
+
59
+ 6. Run gradio inference app
60
+
61
+ ```
62
+ python gradio_inference.py
63
+ ```
64
+
65
+ This repo contains dataset files to train a small model.
66
+
67
+ Dataset Credit : https://github.com/VikramShenoy97/Human-Segmentation-Datasets
model.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ import segmentation_models_pytorch as smp
3
+ from segmentation_models_pytorch.losses import DiceLoss
4
+
5
+ ENCODER = 'timm-efficientnet-b0'
6
+ WEIGHTS = 'imagenet'
7
+
8
+ class SegmentationModel(nn.Module):
9
+
10
+ def __init__(self):
11
+ super(SegmentationModel, self).__init__()
12
+
13
+ self.arc = smp.Unet(
14
+ encoder_name = ENCODER,
15
+ encoder_weights = WEIGHTS,
16
+ in_channels = 3,
17
+ classes = 1,
18
+ activation = None
19
+ )
20
+
21
+ def forward(self, images, masks = None):
22
+
23
+ logits = self.arc(images)
24
+
25
+ if masks != None:
26
+ loss1 = DiceLoss(mode='binary')(logits, masks)
27
+ loss2 = nn.BCEWithLogitsLoss()(logits, masks)
28
+ return logits, loss1 + loss2
29
+
30
+ return logits
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ albumentations==1.3.0
2
+ segmentation-models-pytorch==0.3.2
3
+ opencv-contrib-python
train.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import cv2
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+ from tqdm import tqdm
7
+ import matplotlib.pyplot as plt
8
+
9
+ from utils import load_config, get_train_augs, get_valid_augs, train_fn, eval_fn, SegmentationDataset
10
+ from model import SegmentationModel
11
+ from sklearn.model_selection import train_test_split
12
+ from torch.utils.data import DataLoader
13
+
14
+ # set device for training
15
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
16
+
17
+ # load config file
18
+ config = load_config()
19
+
20
+ # load train files in dataframe
21
+ df = pd.read_csv(config['files']['CSV_FILE'])
22
+
23
+ train_df, valid_df = train_test_split(df, test_size = 0.2, random_state = 42)
24
+
25
+ trainset = SegmentationDataset(train_df, get_train_augs(config['model']['IMAGE_SIZE']))
26
+
27
+ validset = SegmentationDataset(valid_df, get_valid_augs(config['model']['IMAGE_SIZE']))
28
+
29
+ print(f"Size of Trainset : {len(trainset)}")
30
+ print(f"Size of Validset : {len(validset)}")
31
+
32
+ trainloader = DataLoader(trainset, batch_size=config['model']['BATCH_SIZE'], shuffle = True)
33
+ validloader = DataLoader(validset, batch_size=config['model']['BATCH_SIZE'])
34
+
35
+ print(f"Total n of batches in trainloader: {len(trainloader)}")
36
+ print(f"Total n of batches in validloader: {len(validloader)}")
37
+
38
+
39
+ model = SegmentationModel()
40
+ model.to(DEVICE)
41
+
42
+ optimizer = torch.optim.Adam(model.parameters(), lr = config['model']['LR'])
43
+
44
+ best_valid_loss = np.Inf
45
+
46
+ for i in tqdm(range(config['model']['EPOCHS'])):
47
+
48
+ train_loss = train_fn(trainloader, model, optimizer, DEVICE)
49
+ valid_loss = eval_fn(validloader, model, DEVICE)
50
+
51
+ if valid_loss < best_valid_loss:
52
+ torch.save(model.state_dict(), 'best_model.pt')
53
+ print('SAVED-MODEL')
54
+ best_valid_loss = valid_loss
55
+ print(f"Epoch: {i+1} Train Loss: {train_loss} Valid Loss: {valid_loss}")
utils.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import cv2
3
+ import torch
4
+ import yaml
5
+ import numpy as np
6
+ import albumentations as A
7
+ from torch.utils.data import Dataset
8
+
9
+
10
+ def get_train_augs(IMAGE_SIZE):
11
+
12
+ return A.Compose([
13
+ A.Resize(IMAGE_SIZE, IMAGE_SIZE),
14
+ A.HorizontalFlip(p = 0.5),
15
+ A.VerticalFlip(p = 0.5)
16
+ ])
17
+
18
+ def get_valid_augs(IMAGE_SIZE):
19
+
20
+ return A.Compose([
21
+ A.Resize(IMAGE_SIZE, IMAGE_SIZE),
22
+ ])
23
+
24
+ def train_fn(data_loader, model, optimizer, DEVICE):
25
+
26
+ model.train()
27
+ total_loss = 0.0
28
+
29
+ for images, masks in data_loader:
30
+
31
+ images = images.to(DEVICE)
32
+ masks = masks.to(DEVICE)
33
+
34
+ optimizer.zero_grad()
35
+ logits, loss = model(images, masks)
36
+ loss.backward()
37
+ optimizer.step()
38
+ total_loss += loss.item()
39
+
40
+ return total_loss / len(data_loader)
41
+
42
+ def eval_fn(data_loader, model, DEVICE):
43
+
44
+ model.eval()
45
+ total_loss = 0.0
46
+ with torch.no_grad():
47
+ for images, masks in data_loader:
48
+
49
+ images = images.to(DEVICE)
50
+ masks = masks.to(DEVICE)
51
+
52
+ logits, loss = model(images, masks)
53
+
54
+ total_loss += loss.item()
55
+
56
+ return total_loss / len(data_loader)
57
+
58
+ def load_config():
59
+ config_file = f'config/config.yaml'
60
+
61
+ with open(config_file, 'r') as file:
62
+ config = yaml.safe_load(file)
63
+
64
+ return config
65
+
66
+
67
+ class SegmentationDataset(Dataset):
68
+
69
+ def __init__(self, df, augmentations):
70
+
71
+ self.df = df
72
+ self.augmentations = augmentations
73
+
74
+ def __len__(self):
75
+ return len(self.df)
76
+
77
+ def __getitem__(self, idx):
78
+
79
+ row = self.df.iloc[idx]
80
+
81
+ image_path = row.images
82
+ mask_path = row.masks
83
+
84
+ image = cv2.imread(image_path)
85
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
86
+
87
+ mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) #(h, w, c)
88
+ # Resize the mask to the same dimensions as the image
89
+ mask = cv2.resize(mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) # (h, w)
90
+ mask = np.expand_dims(mask, axis = -1)
91
+
92
+ if self.augmentations:
93
+ data = self.augmentations(image = image, mask = mask)
94
+ image = data['image']
95
+ mask = data['mask']
96
+
97
+ # (h, w, c) -> (c, h, w)
98
+ image = np.transpose(image, (2,0,1)).astype(np.float32)
99
+ mask = np.transpose(mask, (2,0,1)).astype(np.float32)
100
+
101
+ image = torch.Tensor(image) / 255.0
102
+ mask = torch.round(torch.Tensor(mask) / 255.0)
103
+
104
+ return image, mask