joselobenitezg's picture
Create app.py
c82f96b
raw
history blame
604 Bytes
import torch
import numpy as np
import gradio as gr
from model import SegmentationModel
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SegmentationModel()
model.to(DEVICE)
model.load_state_dict(torch.load('./best_model.pt'))
def inference(input_img):
image = torch.from_numpy(input_img).permute(2,0,1).float()
logits_mask = model(image.to(DEVICE).unsqueeze(0)) # (C, H, W) -> (1, C, H, W)
pred_mask = torch.sigmoid(logits_mask)
return pred_mask.squeeze().detach().cpu().numpy()
demo = gr.Interface(inference, gr.Image(shape=(224, 224)), "image")
demo.launch()