jonathanjordan21
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import numpy as np
|
3 |
-
from sentence_transformers import CrossEncoder
|
|
|
|
|
4 |
from typing import List
|
5 |
from pydantic import BaseModel
|
6 |
|
@@ -15,30 +17,56 @@ class InputModel(BaseModel):
|
|
15 |
content: str
|
16 |
|
17 |
|
18 |
-
model = CrossEncoder(
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
|
24 |
@app.get("/")
|
25 |
def greet_json():
|
26 |
return {"Hello": "World!"}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
@app.post("/predict_list")
|
29 |
-
async def
|
30 |
-
|
31 |
-
|
32 |
-
# (-scores).argsort().tolist()
|
33 |
-
return {"results":scores.tolist()}
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
@app.post("/
|
37 |
-
async def
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# keywords = model.encode(inp.keywords)
|
44 |
# contents = model.encode(inp.contents)
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import numpy as np
|
3 |
+
from sentence_transformers import CrossEncoder, SentenceTransformer
|
4 |
+
from sentence_transformers.util import cos_sim
|
5 |
+
|
6 |
from typing import List
|
7 |
from pydantic import BaseModel
|
8 |
|
|
|
17 |
content: str
|
18 |
|
19 |
|
20 |
+
# model = CrossEncoder(
|
21 |
+
# # "jinaai/jina-reranker-v2-base-multilingual",
|
22 |
+
# "Alibaba-NLP/gte-multilingual-reranker-base",
|
23 |
+
# trust_remote_code=True,
|
24 |
+
# )
|
25 |
+
|
26 |
+
model = SentenceTransformer(
|
27 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
28 |
+
trust_remote_code=True
|
29 |
)
|
30 |
|
31 |
@app.get("/")
|
32 |
def greet_json():
|
33 |
return {"Hello": "World!"}
|
34 |
|
35 |
+
@app.post("/predict")
|
36 |
+
async def predict(inp: InputModel):
|
37 |
+
|
38 |
+
text_emb = model.encode(inp.contents, convert_to_tensor=True)
|
39 |
+
|
40 |
+
summarize = model.encode(inp.keywords, convert_to_tensor=True)
|
41 |
+
|
42 |
+
out = (torch.nn.functional.cosine_similarity(text_emb, summarize, dim=-1) + 1)/2
|
43 |
+
# out = (cos_sim(text_emb, summarize) + 1)/2
|
44 |
+
return {"results":out.tolist()}
|
45 |
+
|
46 |
+
|
47 |
@app.post("/predict_list")
|
48 |
+
async def predict(inp: InputListModel):
|
49 |
+
text_emb = model.encode(inp.contents, convert_to_tensor=True)
|
50 |
+
summarize = model.encode(inp.keywords, convert_to_tensor=True)
|
|
|
|
|
51 |
|
52 |
+
out = (torch.nn.functional.cosine_similarity(text_emb, summarize, dim=-1) + 1)/2
|
53 |
+
# out = (cos_sim(text_emb, summarize) + 1)/2
|
54 |
+
return {"results":out.tolist()}
|
55 |
|
56 |
+
# @app.post("/predict_list")
|
57 |
+
# async def predict_list(inp : InputListModel):
|
58 |
+
# sentence_pairs = [[query, doc] for query,doc in zip(inp.keywords, inp.contents)]
|
59 |
+
# scores = model.predict(sentence_pairs, convert_to_tensor=False)#.tolist()
|
60 |
+
# # (-scores).argsort().tolist()
|
61 |
+
# return {"results":scores.tolist()}
|
62 |
+
|
63 |
+
|
64 |
+
# @app.post("/predict")
|
65 |
+
# async def predict(inp : InputModel):
|
66 |
+
# sentence_pairs = [[inp.keyword, inp.content]]
|
67 |
+
# scores = model.predict(sentence_pairs, convert_to_tensor=False)#.tolist()
|
68 |
+
# # (-scores).argsort().tolist()
|
69 |
+
# return {"results":scores.tolist()[0]}
|
70 |
|
71 |
# keywords = model.encode(inp.keywords)
|
72 |
# contents = model.encode(inp.contents)
|