Spaces:
Runtime error
Runtime error
johnowhitaker
commited on
Commit
·
eee3c6d
1
Parent(s):
6e64f14
from minGPT
Browse files
model.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
GPT model:
|
3 |
+
- the initial stem consists of a combination of token encoding and a positional encoding
|
4 |
+
- the meat of it is a uniform sequence of Transformer blocks
|
5 |
+
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
|
6 |
+
- all blocks feed into a central residual pathway similar to resnets
|
7 |
+
- the final decoder is a linear projection into a vanilla Softmax classifier
|
8 |
+
"""
|
9 |
+
|
10 |
+
import math
|
11 |
+
import logging
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
class GPTConfig:
|
20 |
+
""" base GPT config, params common to all GPT versions """
|
21 |
+
embd_pdrop = 0.1
|
22 |
+
resid_pdrop = 0.1
|
23 |
+
attn_pdrop = 0.1
|
24 |
+
|
25 |
+
def __init__(self, vocab_size, block_size, **kwargs):
|
26 |
+
self.vocab_size = vocab_size
|
27 |
+
self.block_size = block_size
|
28 |
+
for k,v in kwargs.items():
|
29 |
+
setattr(self, k, v)
|
30 |
+
|
31 |
+
class GPT1Config(GPTConfig):
|
32 |
+
""" GPT-1 like network roughly 125M params """
|
33 |
+
n_layer = 12
|
34 |
+
n_head = 12
|
35 |
+
n_embd = 768
|
36 |
+
|
37 |
+
class CausalSelfAttention(nn.Module):
|
38 |
+
"""
|
39 |
+
A vanilla multi-head masked self-attention layer with a projection at the end.
|
40 |
+
It is possible to use torch.nn.MultiheadAttention here but I am including an
|
41 |
+
explicit implementation here to show that there is nothing too scary here.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super().__init__()
|
46 |
+
assert config.n_embd % config.n_head == 0
|
47 |
+
# key, query, value projections for all heads
|
48 |
+
self.key = nn.Linear(config.n_embd, config.n_embd)
|
49 |
+
self.query = nn.Linear(config.n_embd, config.n_embd)
|
50 |
+
self.value = nn.Linear(config.n_embd, config.n_embd)
|
51 |
+
# regularization
|
52 |
+
self.attn_drop = nn.Dropout(config.attn_pdrop)
|
53 |
+
self.resid_drop = nn.Dropout(config.resid_pdrop)
|
54 |
+
# output projection
|
55 |
+
self.proj = nn.Linear(config.n_embd, config.n_embd)
|
56 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
57 |
+
self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
|
58 |
+
.view(1, 1, config.block_size, config.block_size))
|
59 |
+
self.n_head = config.n_head
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
63 |
+
|
64 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
65 |
+
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
66 |
+
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
67 |
+
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
68 |
+
|
69 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
70 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
71 |
+
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
|
72 |
+
att = F.softmax(att, dim=-1)
|
73 |
+
att = self.attn_drop(att)
|
74 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
75 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
76 |
+
|
77 |
+
# output projection
|
78 |
+
y = self.resid_drop(self.proj(y))
|
79 |
+
return y
|
80 |
+
|
81 |
+
class Block(nn.Module):
|
82 |
+
""" an unassuming Transformer block """
|
83 |
+
|
84 |
+
def __init__(self, config):
|
85 |
+
super().__init__()
|
86 |
+
self.ln1 = nn.LayerNorm(config.n_embd)
|
87 |
+
self.ln2 = nn.LayerNorm(config.n_embd)
|
88 |
+
self.attn = CausalSelfAttention(config)
|
89 |
+
self.mlp = nn.Sequential(
|
90 |
+
nn.Linear(config.n_embd, 4 * config.n_embd),
|
91 |
+
nn.GELU(),
|
92 |
+
nn.Linear(4 * config.n_embd, config.n_embd),
|
93 |
+
nn.Dropout(config.resid_pdrop),
|
94 |
+
)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
x = x + self.attn(self.ln1(x))
|
98 |
+
x = x + self.mlp(self.ln2(x))
|
99 |
+
return x
|
100 |
+
|
101 |
+
class GPT(nn.Module):
|
102 |
+
""" the full GPT language model, with a context size of block_size """
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
# input embedding stem
|
108 |
+
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
|
109 |
+
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
|
110 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
111 |
+
# transformer
|
112 |
+
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
|
113 |
+
# decoder head
|
114 |
+
self.ln_f = nn.LayerNorm(config.n_embd)
|
115 |
+
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
116 |
+
|
117 |
+
self.block_size = config.block_size
|
118 |
+
self.apply(self._init_weights)
|
119 |
+
|
120 |
+
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
121 |
+
|
122 |
+
def get_block_size(self):
|
123 |
+
return self.block_size
|
124 |
+
|
125 |
+
def _init_weights(self, module):
|
126 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
127 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
128 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
129 |
+
torch.nn.init.zeros_(module.bias)
|
130 |
+
elif isinstance(module, nn.LayerNorm):
|
131 |
+
torch.nn.init.zeros_(module.bias)
|
132 |
+
torch.nn.init.ones_(module.weight)
|
133 |
+
elif isinstance(module, GPT):
|
134 |
+
torch.nn.init.normal_(module.pos_emb, mean=0.0, std=0.02)
|
135 |
+
|
136 |
+
def configure_optimizers(self, train_config):
|
137 |
+
"""
|
138 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
139 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
140 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
141 |
+
We are then returning the PyTorch optimizer object.
|
142 |
+
"""
|
143 |
+
|
144 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
145 |
+
decay = set()
|
146 |
+
no_decay = set()
|
147 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
148 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
149 |
+
for mn, m in self.named_modules():
|
150 |
+
for pn, p in m.named_parameters():
|
151 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
152 |
+
|
153 |
+
if pn.endswith('bias'):
|
154 |
+
# all biases will not be decayed
|
155 |
+
no_decay.add(fpn)
|
156 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
157 |
+
# weights of whitelist modules will be weight decayed
|
158 |
+
decay.add(fpn)
|
159 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
160 |
+
# weights of blacklist modules will NOT be weight decayed
|
161 |
+
no_decay.add(fpn)
|
162 |
+
|
163 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
164 |
+
no_decay.add('pos_emb')
|
165 |
+
|
166 |
+
# validate that we considered every parameter
|
167 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
168 |
+
inter_params = decay & no_decay
|
169 |
+
union_params = decay | no_decay
|
170 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
171 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
172 |
+
% (str(param_dict.keys() - union_params), )
|
173 |
+
|
174 |
+
# create the pytorch optimizer object
|
175 |
+
optim_groups = [
|
176 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
177 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
178 |
+
]
|
179 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
180 |
+
return optimizer
|
181 |
+
|
182 |
+
def forward(self, idx, targets=None):
|
183 |
+
b, t = idx.size()
|
184 |
+
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
185 |
+
|
186 |
+
# forward the GPT model
|
187 |
+
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
|
188 |
+
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
|
189 |
+
x = self.drop(token_embeddings + position_embeddings)
|
190 |
+
x = self.blocks(x)
|
191 |
+
x = self.ln_f(x)
|
192 |
+
logits = self.head(x)
|
193 |
+
|
194 |
+
# if we are given some desired targets also calculate the loss
|
195 |
+
loss = None
|
196 |
+
if targets is not None:
|
197 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
198 |
+
|
199 |
+
return logits, loss
|