Spaces:
Build error
Build error
from enum import Enum | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module | |
from models.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE, _upsample_add | |
from models.stylegan2.model import EqualLinear | |
class ProgressiveStage(Enum): | |
WTraining = 0 | |
Delta1Training = 1 | |
Delta2Training = 2 | |
Delta3Training = 3 | |
Delta4Training = 4 | |
Delta5Training = 5 | |
Delta6Training = 6 | |
Delta7Training = 7 | |
Delta8Training = 8 | |
Delta9Training = 9 | |
Delta10Training = 10 | |
Delta11Training = 11 | |
Delta12Training = 12 | |
Delta13Training = 13 | |
Delta14Training = 14 | |
Delta15Training = 15 | |
Delta16Training = 16 | |
Delta17Training = 17 | |
Inference = 18 | |
class GradualStyleBlock(Module): | |
def __init__(self, in_c, out_c, spatial): | |
super(GradualStyleBlock, self).__init__() | |
self.out_c = out_c | |
self.spatial = spatial | |
num_pools = int(np.log2(spatial)) | |
modules = [] | |
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU()] | |
for i in range(num_pools - 1): | |
modules += [ | |
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU() | |
] | |
self.convs = nn.Sequential(*modules) | |
self.linear = EqualLinear(out_c, out_c, lr_mul=1) | |
def forward(self, x): | |
x = self.convs(x) | |
x = x.view(-1, self.out_c) | |
x = self.linear(x) | |
return x | |
class GradualStyleEncoder(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(GradualStyleEncoder, self).__init__() | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
self.styles = nn.ModuleList() | |
log_size = int(math.log(opts.stylegan_size, 2)) | |
self.style_count = 2 * log_size - 2 | |
self.coarse_ind = 3 | |
self.middle_ind = 7 | |
for i in range(self.style_count): | |
if i < self.coarse_ind: | |
style = GradualStyleBlock(512, 512, 16) | |
elif i < self.middle_ind: | |
style = GradualStyleBlock(512, 512, 32) | |
else: | |
style = GradualStyleBlock(512, 512, 64) | |
self.styles.append(style) | |
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) | |
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
x = self.input_layer(x) | |
latents = [] | |
modulelist = list(self.body._modules.values()) | |
for i, l in enumerate(modulelist): | |
x = l(x) | |
if i == 6: | |
c1 = x | |
elif i == 20: | |
c2 = x | |
elif i == 23: | |
c3 = x | |
for j in range(self.coarse_ind): | |
latents.append(self.styles[j](c3)) | |
p2 = _upsample_add(c3, self.latlayer1(c2)) | |
for j in range(self.coarse_ind, self.middle_ind): | |
latents.append(self.styles[j](p2)) | |
p1 = _upsample_add(p2, self.latlayer2(c1)) | |
for j in range(self.middle_ind, self.style_count): | |
latents.append(self.styles[j](p1)) | |
out = torch.stack(latents, dim=1) | |
return out | |
class Encoder4Editing(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(Encoder4Editing, self).__init__() | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
self.styles = nn.ModuleList() | |
log_size = int(math.log(opts.stylegan_size, 2)) | |
self.style_count = 2 * log_size - 2 | |
self.coarse_ind = 3 | |
self.middle_ind = 7 | |
for i in range(self.style_count): | |
if i < self.coarse_ind: | |
style = GradualStyleBlock(512, 512, 16) | |
elif i < self.middle_ind: | |
style = GradualStyleBlock(512, 512, 32) | |
else: | |
style = GradualStyleBlock(512, 512, 64) | |
self.styles.append(style) | |
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) | |
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) | |
self.progressive_stage = ProgressiveStage.Inference | |
def get_deltas_starting_dimensions(self): | |
''' Get a list of the initial dimension of every delta from which it is applied ''' | |
return list(range(self.style_count)) # Each dimension has a delta applied to it | |
def set_progressive_stage(self, new_stage: ProgressiveStage): | |
self.progressive_stage = new_stage | |
print('Changed progressive stage to: ', new_stage) | |
# Forward pass also returns the intermediate feature maps | |
def forward(self, x): | |
x = self.input_layer(x) | |
modulelist = list(self.body._modules.values()) | |
for i, l in enumerate(modulelist): | |
x = l(x) | |
if i == 6: | |
c1 = x | |
elif i == 20: | |
c2 = x | |
elif i == 23: | |
c3 = x | |
# Infer main W and duplicate it | |
w0 = self.styles[0](c3) | |
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2) | |
stage = self.progressive_stage.value | |
features = c3 | |
for i in range(1, min(stage + 1, self.style_count)): # Infer additional deltas | |
if i == self.coarse_ind: | |
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features | |
features = p2 | |
elif i == self.middle_ind: | |
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features | |
features = p1 | |
delta_i = self.styles[i](features) | |
w[:, i] += delta_i | |
return w, (c1,c2,c3) | |
# Forward the modulated features through the map2style layers to obtain the residual latents | |
def forward_features(self, features): | |
c1, c2, c3 = features | |
# Infer main W and duplicate it | |
w0 = self.styles[0](c3) | |
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2) | |
stage = self.progressive_stage.value | |
features = c3 | |
for i in range(1, min(stage + 1, self.style_count)): # Infer additional deltas | |
if i == self.coarse_ind: | |
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features | |
features = p2 | |
elif i == self.middle_ind: | |
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features | |
features = p1 | |
delta_i = self.styles[i](features) | |
w[:, i] += delta_i | |
return w | |
class BackboneEncoderUsingLastLayerIntoW(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(BackboneEncoderUsingLastLayerIntoW, self).__init__() | |
print('Using BackboneEncoderUsingLastLayerIntoW') | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) | |
self.linear = EqualLinear(512, 512, lr_mul=1) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
log_size = int(math.log(opts.stylegan_size, 2)) | |
self.style_count = 2 * log_size - 2 | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_pool(x) | |
x = x.view(-1, 512) | |
x = self.linear(x) | |
return x.repeat(self.style_count, 1, 1).permute(1, 0, 2) | |