Spaces:
Build error
Build error
import matplotlib | |
matplotlib.use('Agg') | |
import torch | |
from torch import nn | |
from models.encoders import psp_encoders_features | |
def get_keys(d, name): | |
if 'state_dict' in d: | |
d = d['state_dict'] | |
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name} | |
return d_filt | |
class pSp(nn.Module): | |
def __init__(self, opts): | |
super(pSp, self).__init__() | |
self.opts = opts | |
# Define architecture | |
self.encoder = self.set_encoder().eval() | |
# Load weights if needed | |
self.load_weights() | |
def set_encoder(self): | |
encoder = psp_encoders_features.Encoder4Editing(50, 'ir_se', self.opts) | |
return encoder | |
def load_weights(self): | |
# We only load the encoder weights | |
print('Loading e4e over the pSp framework from checkpoint: {}'.format(self.opts.pretrained_e4e_path)) | |
ckpt = torch.load(self.opts.pretrained_e4e_path, map_location='cpu') | |
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True) | |
self.__load_latent_avg(ckpt) | |
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True, | |
inject_latent=None, return_latents=False, alpha=None): | |
if input_code: | |
codes = x | |
else: | |
codes, features = self.encoder(x) | |
# normalize with respect to the center of an average face | |
if self.opts.start_from_latent_avg: | |
if codes.ndim == 2: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :] | |
else: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1) | |
if latent_mask is not None: | |
for i in latent_mask: | |
if inject_latent is not None: | |
if alpha is not None: | |
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i] | |
else: | |
codes[:, i] = inject_latent[:, i] | |
else: | |
codes[:, i] = 0 | |
return codes, features | |
# Forward the modulated feature maps | |
def forward_features(self, features): | |
return self.encoder.forward_features(features) | |
def __load_latent_avg(self, ckpt, repeat=None): | |
if 'latent_avg' in ckpt: | |
self.latent_avg = ckpt['latent_avg'].to(self.opts.device) | |
if repeat is not None: | |
self.latent_avg = self.latent_avg.repeat(repeat, 1) | |
else: | |
self.latent_avg = None | |