Spaces:
Sleeping
Sleeping
model
Browse files
model.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
from datetime import datetime
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from utools import load_relevant_data_subset,mark_pred
|
8 |
+
from utools import softmax
|
9 |
+
import mediapipe as mp
|
10 |
+
import cv2
|
11 |
+
import json
|
12 |
+
N=3
|
13 |
+
|
14 |
+
ROWS_PER_FRAME=543
|
15 |
+
with open('sign_to_prediction_index_map_cn.json', 'r') as f:
|
16 |
+
person_dict = json.load(f)
|
17 |
+
inverse_dict=dict([val,key] for key,val in person_dict.items())
|
18 |
+
|
19 |
+
|
20 |
+
def r_holistic(video_path):
|
21 |
+
mp_drawing = mp.solutions.drawing_utils
|
22 |
+
mp_drawing_styles = mp.solutions.drawing_styles
|
23 |
+
mp_holistic = mp.solutions.holistic
|
24 |
+
frame_number = 0
|
25 |
+
frame = []
|
26 |
+
type_ = []
|
27 |
+
index = []
|
28 |
+
x = []
|
29 |
+
y = []
|
30 |
+
z = []
|
31 |
+
cap=cv2.VideoCapture(video_path)
|
32 |
+
frame_width = int(cap.get(3))
|
33 |
+
frame_height = int(cap.get(4))
|
34 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
35 |
+
frame_size = (frame_width, frame_height)
|
36 |
+
fourcc = cv2.VideoWriter_fourcc(*"VP80") #cv2.VideoWriter_fourcc('H.264')
|
37 |
+
output_video = "output_recorded_holistic.webm"
|
38 |
+
out = cv2.VideoWriter(output_video, fourcc, int(fps/N), frame_size)
|
39 |
+
with mp_holistic.Holistic(min_detection_confidence=0.5,min_tracking_confidence=0.5) as holistic:
|
40 |
+
n=0
|
41 |
+
while cap.isOpened():
|
42 |
+
frame_number+=1
|
43 |
+
n+=1
|
44 |
+
ret, image = cap.read()
|
45 |
+
if not ret:
|
46 |
+
break
|
47 |
+
if n%N==0:
|
48 |
+
image.flags.writeable = False
|
49 |
+
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
|
50 |
+
#mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=RGB_frame)
|
51 |
+
results = holistic.process(image)
|
52 |
+
|
53 |
+
# Draw landmark annotation on the image.
|
54 |
+
image.flags.writeable = True
|
55 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
56 |
+
mp_drawing.draw_landmarks(
|
57 |
+
image,
|
58 |
+
results.face_landmarks,
|
59 |
+
mp_holistic.FACEMESH_CONTOURS,
|
60 |
+
landmark_drawing_spec=None,
|
61 |
+
connection_drawing_spec=mp_drawing_styles
|
62 |
+
.get_default_face_mesh_contours_style())
|
63 |
+
mp_drawing.draw_landmarks(
|
64 |
+
image,
|
65 |
+
results.pose_landmarks,
|
66 |
+
mp_holistic.POSE_CONNECTIONS,
|
67 |
+
landmark_drawing_spec=mp_drawing_styles
|
68 |
+
.get_default_pose_landmarks_style())
|
69 |
+
# Flip the image horizontally for a selfie-view display.
|
70 |
+
#if cv2.waitKey(5) & 0xFF == 27:
|
71 |
+
out.write(image)
|
72 |
+
|
73 |
+
if(results.face_landmarks is None):
|
74 |
+
for i in range(468):
|
75 |
+
frame.append(frame_number)
|
76 |
+
type_.append("face")
|
77 |
+
index.append(ind)
|
78 |
+
x.append(None)
|
79 |
+
y.append(None)
|
80 |
+
z.append(None)
|
81 |
+
else:
|
82 |
+
for ind,val in enumerate(results.face_landmarks.landmark):
|
83 |
+
frame.append(frame_number)
|
84 |
+
type_.append("face")
|
85 |
+
index.append(ind)
|
86 |
+
x.append(val.x)
|
87 |
+
y.append(val.y)
|
88 |
+
z.append(val.z)
|
89 |
+
#left hand
|
90 |
+
if(results.left_hand_landmarks is None):
|
91 |
+
for i in range(21):
|
92 |
+
frame.append(frame_number)
|
93 |
+
type_.append("left_hand")
|
94 |
+
index.append(ind)
|
95 |
+
x.append(None)
|
96 |
+
y.append(None)
|
97 |
+
z.append(None)
|
98 |
+
else:
|
99 |
+
for ind,val in enumerate(results.left_hand_landmarks.landmark):
|
100 |
+
frame.append(frame_number)
|
101 |
+
type_.append("left_hand")
|
102 |
+
index.append(ind)
|
103 |
+
x.append(val.x)
|
104 |
+
y.append(val.y)
|
105 |
+
z.append(val.z)
|
106 |
+
#pose
|
107 |
+
if(results.pose_landmarks is None):
|
108 |
+
for i in range(33):
|
109 |
+
frame.append(frame_number)
|
110 |
+
type_.append("pose")
|
111 |
+
index.append(ind)
|
112 |
+
x.append(None)
|
113 |
+
y.append(None)
|
114 |
+
z.append(None)
|
115 |
+
else:
|
116 |
+
for ind,val in enumerate(results.pose_landmarks.landmark):
|
117 |
+
frame.append(frame_number)
|
118 |
+
type_.append("pose")
|
119 |
+
index.append(ind)
|
120 |
+
x.append(val.x)
|
121 |
+
y.append(val.y)
|
122 |
+
z.append(val.z)
|
123 |
+
#right hand
|
124 |
+
if(results.right_hand_landmarks is None):
|
125 |
+
for i in range(21):
|
126 |
+
frame.append(frame_number)
|
127 |
+
type_.append("right_hand")
|
128 |
+
index.append(ind)
|
129 |
+
x.append(None)
|
130 |
+
y.append(None)
|
131 |
+
z.append(None)
|
132 |
+
else:
|
133 |
+
for ind,val in enumerate(results.right_hand_landmarks.landmark):
|
134 |
+
frame.append(frame_number)
|
135 |
+
type_.append("right_hand")
|
136 |
+
index.append(ind)
|
137 |
+
x.append(val.x)
|
138 |
+
y.append(val.y)
|
139 |
+
z.append(val.z)
|
140 |
+
#break
|
141 |
+
cap.release()
|
142 |
+
out.release()
|
143 |
+
cv2.destroyAllWindows()
|
144 |
+
df1 = pd.DataFrame({
|
145 |
+
"frame" : frame,
|
146 |
+
"type" : type_,
|
147 |
+
"landmark_index" : index,
|
148 |
+
"x" : x,
|
149 |
+
"y" : y,
|
150 |
+
"z" : z
|
151 |
+
})
|
152 |
+
aa=load_relevant_data_subset(df1)
|
153 |
+
model_path_1='model_1.tflite'
|
154 |
+
model_path_2='model_2.tflite'
|
155 |
+
model_path_3='model_3.tflite'
|
156 |
+
#interpreter = tflite.Interpreter(model_path_1)
|
157 |
+
#found_signatures = list(interpreter.get_signature_list().keys())
|
158 |
+
#prediction_fn = interpreter.get_signature_runner("serving_default")
|
159 |
+
output_1 = mark_pred(model_path_1,aa)
|
160 |
+
output_2 = mark_pred(model_path_2,aa)
|
161 |
+
output_3 = mark_pred(model_path_3,aa)
|
162 |
+
output=softmax(output_1['outputs'])+softmax(output_2['outputs'])+softmax(output_3['outputs'])
|
163 |
+
sign = output.argmax()
|
164 |
+
lb = inverse_dict.get(sign)
|
165 |
+
yield output_video,lb
|