Spaces:
Running
Running
File size: 12,097 Bytes
d00a15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting utools.py\n"
]
}
],
"source": [
"%%writefile utools.py\n",
"import tflite_runtime.interpreter as tflite \n",
"import tflite_runtime\n",
"import numpy as np\n",
"ROWS_PER_FRAME=543\n",
"def load_relevant_data_subset(df):\n",
" data_columns = ['x', 'y', 'z']\n",
" data=df[data_columns]\n",
" n_frames = int(len(data) / ROWS_PER_FRAME)#单个文件的总帧数\n",
" data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns))\n",
" return data.astype(np.float32)\n",
"\n",
"def mark_pred(model_path_1,aa):\n",
" interpreter = tflite.Interpreter(model_path_1)\n",
" found_signatures = list(interpreter.get_signature_list().keys())\n",
" prediction_fn = interpreter.get_signature_runner(\"serving_default\")\n",
" output_1 = prediction_fn(inputs=aa)\n",
" return output_1\n",
"\n",
"def softmax(x, axis=None):\n",
" x_exp = np.exp(x - np.max(x, axis=axis, keepdims=True))\n",
" return x_exp / np.sum(x_exp, axis=axis, keepdims=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting model.py\n"
]
}
],
"source": [
"%%writefile model.py\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import shutil\n",
"from datetime import datetime\n",
"from timeit import default_timer as timer\n",
"from utools import load_relevant_data_subset,mark_pred\n",
"from utools import softmax\n",
"import mediapipe as mp\n",
"import cv2\n",
"import json\n",
"N=3\n",
"\n",
"ROWS_PER_FRAME=543\n",
"with open('sign_to_prediction_index_map_cn.json', 'r') as f:\n",
" person_dict = json.load(f)\n",
"inverse_dict=dict([val,key] for key,val in person_dict.items())\n",
"\n",
"\n",
"def r_holistic(video_path):\n",
" mp_drawing = mp.solutions.drawing_utils\n",
" mp_drawing_styles = mp.solutions.drawing_styles\n",
" mp_holistic = mp.solutions.holistic\n",
" frame_number = 0\n",
" frame = []\n",
" type_ = []\n",
" index = []\n",
" x = []\n",
" y = []\n",
" z = []\n",
" cap=cv2.VideoCapture(video_path)\n",
" frame_width = int(cap.get(3))\n",
" frame_height = int(cap.get(4))\n",
" fps = int(cap.get(cv2.CAP_PROP_FPS))\n",
" frame_size = (frame_width, frame_height)\n",
" fourcc = cv2.VideoWriter_fourcc(*\"VP80\") #cv2.VideoWriter_fourcc('H.264')\n",
" output_video = \"output_recorded_holistic.webm\"\n",
" out = cv2.VideoWriter(output_video, fourcc, int(fps/N), frame_size)\n",
" with mp_holistic.Holistic(min_detection_confidence=0.5,min_tracking_confidence=0.5) as holistic:\n",
" n=0\n",
" while cap.isOpened():\n",
" frame_number+=1\n",
" n+=1\n",
" ret, image = cap.read()\n",
" if not ret:\n",
" break\n",
" if n%N==0:\n",
" image.flags.writeable = False\n",
" image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n",
" #mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=RGB_frame)\n",
" results = holistic.process(image)\n",
"\n",
" # Draw landmark annotation on the image.\n",
" image.flags.writeable = True\n",
" image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)\n",
" mp_drawing.draw_landmarks(\n",
" image,\n",
" results.face_landmarks,\n",
" mp_holistic.FACEMESH_CONTOURS,\n",
" landmark_drawing_spec=None,\n",
" connection_drawing_spec=mp_drawing_styles\n",
" .get_default_face_mesh_contours_style())\n",
" mp_drawing.draw_landmarks(\n",
" image,\n",
" results.pose_landmarks,\n",
" mp_holistic.POSE_CONNECTIONS,\n",
" landmark_drawing_spec=mp_drawing_styles\n",
" .get_default_pose_landmarks_style())\n",
" # Flip the image horizontally for a selfie-view display.\n",
" #if cv2.waitKey(5) & 0xFF == 27:\n",
" out.write(image)\n",
" \n",
" if(results.face_landmarks is None):\n",
" for i in range(468):\n",
" frame.append(frame_number)\n",
" type_.append(\"face\")\n",
" index.append(ind)\n",
" x.append(None)\n",
" y.append(None)\n",
" z.append(None)\n",
" else:\n",
" for ind,val in enumerate(results.face_landmarks.landmark):\n",
" frame.append(frame_number)\n",
" type_.append(\"face\")\n",
" index.append(ind)\n",
" x.append(val.x)\n",
" y.append(val.y)\n",
" z.append(val.z)\n",
" #left hand\n",
" if(results.left_hand_landmarks is None):\n",
" for i in range(21):\n",
" frame.append(frame_number)\n",
" type_.append(\"left_hand\")\n",
" index.append(ind)\n",
" x.append(None)\n",
" y.append(None)\n",
" z.append(None)\n",
" else:\n",
" for ind,val in enumerate(results.left_hand_landmarks.landmark):\n",
" frame.append(frame_number)\n",
" type_.append(\"left_hand\")\n",
" index.append(ind)\n",
" x.append(val.x)\n",
" y.append(val.y)\n",
" z.append(val.z)\n",
" #pose\n",
" if(results.pose_landmarks is None):\n",
" for i in range(33):\n",
" frame.append(frame_number)\n",
" type_.append(\"pose\")\n",
" index.append(ind)\n",
" x.append(None)\n",
" y.append(None)\n",
" z.append(None)\n",
" else:\n",
" for ind,val in enumerate(results.pose_landmarks.landmark):\n",
" frame.append(frame_number)\n",
" type_.append(\"pose\")\n",
" index.append(ind)\n",
" x.append(val.x)\n",
" y.append(val.y)\n",
" z.append(val.z)\n",
" #right hand\n",
" if(results.right_hand_landmarks is None):\n",
" for i in range(21):\n",
" frame.append(frame_number)\n",
" type_.append(\"right_hand\")\n",
" index.append(ind)\n",
" x.append(None)\n",
" y.append(None)\n",
" z.append(None)\n",
" else:\n",
" for ind,val in enumerate(results.right_hand_landmarks.landmark):\n",
" frame.append(frame_number)\n",
" type_.append(\"right_hand\")\n",
" index.append(ind)\n",
" x.append(val.x)\n",
" y.append(val.y)\n",
" z.append(val.z)\n",
" #break\n",
" cap.release()\n",
" out.release()\n",
" cv2.destroyAllWindows()\n",
" df1 = pd.DataFrame({\n",
" \"frame\" : frame,\n",
" \"type\" : type_,\n",
" \"landmark_index\" : index,\n",
" \"x\" : x,\n",
" \"y\" : y,\n",
" \"z\" : z\n",
" })\n",
" aa=load_relevant_data_subset(df1)\n",
" model_path_1='model_1.tflite'\n",
" model_path_2='model_2.tflite'\n",
" model_path_3='model_3.tflite'\n",
" #interpreter = tflite.Interpreter(model_path_1)\n",
" #found_signatures = list(interpreter.get_signature_list().keys())\n",
" #prediction_fn = interpreter.get_signature_runner(\"serving_default\")\n",
" output_1 = mark_pred(model_path_1,aa)\n",
" output_2 = mark_pred(model_path_2,aa)\n",
" output_3 = mark_pred(model_path_3,aa)\n",
" output=softmax(output_1['outputs'])+softmax(output_2['outputs'])+softmax(output_3['outputs'])\n",
" sign = output.argmax()\n",
" lb = inverse_dict.get(sign)\n",
" yield output_video,lb"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting app.py\n"
]
}
],
"source": [
"%%writefile app.py\n",
"\n",
"import gradio as gr\n",
"from model import r_holistic\n",
"\n",
"title='手语动作分类'\n",
"description = \"此分类模型可以识别250个[ASL](https://www.lifeprint.com/)手语动作\\\n",
" 并将其转化为特定的标签, 标签列表见链接[sign_to_prediction_index_map.json](sign_to_prediction_index_map.json), \\\n",
" 大家可以使用示例视频进行测试, 也可以根据列表下载或模拟相应的手语视频测试输出.\\\n",
" \\n工作流程:\\\n",
" \\n 1. landmark提取, 我使用了[ MediaPipe Holistic Solution](https://ai.google.dev/edge/mediapipe/solutions/vision/holistic_landmarker)进行landmark提取.\\\n",
" \\n 2. 利用landmark进行手语识别, 我使用了自己搭建并训练的模型, 主体框架为cnn和transform,此模型在测试数据集上精度在90%以上.\"\n",
"\n",
"output_video_file = gr.Video(label=\"landmark输出\")\n",
"output_text=gr.Textbox(label=\"手语预测结果\")\n",
"slider_1=gr.Slider(0,1,label='detection_confidence')\n",
"slider_2=gr.Slider(0,1,label='tracking_confidence')\n",
"\n",
"iface = gr.Interface(\n",
" fn=r_holistic,\n",
" inputs=[gr.Video(sources=None, label=\"手语视频片段\")],\n",
" outputs= [output_video_file,output_text],\n",
" title=title, \n",
" description=description,\n",
" examples=['book.mp4','book2.mp4','chair1.mp4','chair2.mp4'],\n",
" #cache_examples=True,\n",
" ) #[\"hand-land-mark-video/01.mp4\",\"hand-land-mark-video/02.mp4\"]\n",
" \n",
"\n",
"iface.launch(share=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|