File size: 20,909 Bytes
0a72c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import gc
import os
from typing import Any, Callable, List, Literal, Union, Dict, Tuple
import logging

from safetensors.torch import load_file
from safetensors import safe_open
import torch
from torch import nn
from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from .convert_from_ckpt import (
    convert_ldm_unet_checkpoint,
    convert_ldm_vae_checkpoint,
    convert_ldm_clip_checkpoint,
)
from .convert_lora_safetensor_to_diffusers import convert_motion_lora_ckpt_to_diffusers

logger = logging.getLogger(__name__)


def update_pipeline_model_parameters(
    pipeline: DiffusionPipeline,
    model_path: str = None,
    lora_dict: Dict[str, Dict] = None,
    text_model_path: str = None,
    device="cuda",
    need_unload: bool = False,
):
    if model_path is not None:
        pipeline = update_pipeline_basemodel(
            pipeline, model_path, text_sd_model_path=text_model_path, device=device
        )
    if lora_dict is not None:
        pipeline, unload_dict = update_pipeline_lora_models(
            pipeline,
            lora_dict,
            device=device,
            need_unload=need_unload,
        )
        if need_unload:
            return pipeline, unload_dict
    return pipeline


def update_pipeline_basemodel(
    pipeline: DiffusionPipeline,
    model_path: str,
    text_sd_model_path: str,
    device: str = "cuda",
):
    """使用model_path更新pipeline中的基础参数

    Args:
        pipeline (DiffusionPipeline): _description_
        model_path (str): _description_
        text_sd_model_path (str): _description_
        device (str, optional): _description_. Defaults to "cuda".

    Returns:
        _type_: _description_
    """
    # load base
    if model_path.endswith(".ckpt"):
        state_dict = torch.load(model_path, map_location=device)
        pipeline.unet.load_state_dict(state_dict)
        print("update sd_model", model_path)
    elif model_path.endswith(".safetensors"):
        base_state_dict = {}
        with safe_open(model_path, framework="pt", device=device) as f:
            for key in f.keys():
                base_state_dict[key] = f.get_tensor(key)

        is_lora = all("lora" in k for k in base_state_dict.keys())
        assert is_lora == False, "Base model cannot be LoRA: {}".format(model_path)

        # vae
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(
            base_state_dict, pipeline.vae.config
        )
        pipeline.vae.load_state_dict(converted_vae_checkpoint)
        # unet
        converted_unet_checkpoint = convert_ldm_unet_checkpoint(
            base_state_dict, pipeline.unet.config
        )
        pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
        # text_model
        pipeline.text_encoder = convert_ldm_clip_checkpoint(
            base_state_dict, text_sd_model_path
        )
        print("update sd_model", model_path)
    pipeline.to(device)
    return pipeline


# ref https://git.woa.com/innovative_tech/GenerationGroup/VirtualIdol/VidolImageDraw/blob/master/cfg.yaml
LORA_BLOCK_WEIGHT_MAP = {
    "FACE": [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
    "DEFACE": [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1],
    "ALL": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    "MIDD": [1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
    "OUTALL": [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
}


# ref https://git.woa.com/innovative_tech/GenerationGroup/VirtualIdol/VidolImageDraw/blob/master/pipeline/draw_pipe.py
def update_pipeline_lora_model(
    pipeline: DiffusionPipeline,
    lora: Union[str, Dict],
    alpha: float = 0.75,
    device: str = "cuda",
    lora_prefix_unet: str = "lora_unet",
    lora_prefix_text_encoder: str = "lora_te",
    lora_unet_layers=[
        "lora_unet_down_blocks_0_attentions_0",
        "lora_unet_down_blocks_0_attentions_1",
        "lora_unet_down_blocks_1_attentions_0",
        "lora_unet_down_blocks_1_attentions_1",
        "lora_unet_down_blocks_2_attentions_0",
        "lora_unet_down_blocks_2_attentions_1",
        "lora_unet_mid_block_attentions_0",
        "lora_unet_up_blocks_1_attentions_0",
        "lora_unet_up_blocks_1_attentions_1",
        "lora_unet_up_blocks_1_attentions_2",
        "lora_unet_up_blocks_2_attentions_0",
        "lora_unet_up_blocks_2_attentions_1",
        "lora_unet_up_blocks_2_attentions_2",
        "lora_unet_up_blocks_3_attentions_0",
        "lora_unet_up_blocks_3_attentions_1",
        "lora_unet_up_blocks_3_attentions_2",
    ],
    lora_block_weight_str: Literal["FACE", "ALL"] = "ALL",
    need_unload: bool = False,
):
    """使用 lora 更新pipeline中的unet相关参数

    Args:
        pipeline (DiffusionPipeline): _description_
        lora (Union[str, Dict]): _description_
        alpha (float, optional): _description_. Defaults to 0.75.
        device (str, optional): _description_. Defaults to "cuda".
        lora_prefix_unet (str, optional): _description_. Defaults to "lora_unet".
        lora_prefix_text_encoder (str, optional): _description_. Defaults to "lora_te".
        lora_unet_layers (list, optional): _description_. Defaults to [ "lora_unet_down_blocks_0_attentions_0", "lora_unet_down_blocks_0_attentions_1", "lora_unet_down_blocks_1_attentions_0", "lora_unet_down_blocks_1_attentions_1", "lora_unet_down_blocks_2_attentions_0", "lora_unet_down_blocks_2_attentions_1", "lora_unet_mid_block_attentions_0", "lora_unet_up_blocks_1_attentions_0", "lora_unet_up_blocks_1_attentions_1", "lora_unet_up_blocks_1_attentions_2", "lora_unet_up_blocks_2_attentions_0", "lora_unet_up_blocks_2_attentions_1", "lora_unet_up_blocks_2_attentions_2", "lora_unet_up_blocks_3_attentions_0", "lora_unet_up_blocks_3_attentions_1", "lora_unet_up_blocks_3_attentions_2", ].
        lora_block_weight_str (Literal["FACE", "ALL"], optional): _description_. Defaults to "ALL".
        need_unload (bool, optional): _description_. Defaults to False.

    Returns:
        _type_: _description_
    """
    # ref https://git.woa.com/innovative_tech/GenerationGroup/VirtualIdol/VidolImageDraw/blob/master/pipeline/tool.py#L20
    if lora_block_weight_str is not None:
        lora_block_weight = LORA_BLOCK_WEIGHT_MAP[lora_block_weight_str.upper()]
    if lora_block_weight:
        assert len(lora_block_weight) == 17
    # load lora weight
    if isinstance(lora, str):
        state_dict = load_file(lora, device=device)
    else:
        for k in lora:
            lora[k] = lora[k].to(device)
        state_dict = lora  # state_dict = {}

    visited = set()
    unload_dict = []
    # directly update weight in diffusers model
    for key in state_dict:
        # it is suggested to print out the key, it usually will be something like below
        # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

        # as we have set the alpha beforehand, so just skip
        if ".alpha" in key or key in visited:
            continue

        if "text" in key:
            layer_infos = (
                key.split(".")[0].split(lora_prefix_text_encoder + "_")[-1].split("_")
            )
            curr_layer = pipeline.text_encoder
        else:
            layer_infos = key.split(".")[0].split(lora_prefix_unet + "_")[-1].split("_")
            curr_layer = pipeline.unet

        # find the target layer
        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += "_" + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        pair_keys = []
        if "lora_down" in key:
            pair_keys.append(key.replace("lora_down", "lora_up"))
            pair_keys.append(key)
            alpha_key = key.replace("lora_down.weight", "alpha")
        else:
            pair_keys.append(key)
            pair_keys.append(key.replace("lora_up", "lora_down"))
            alpha_key = key.replace("lora_up.weight", "alpha")

        # update weight
        if len(state_dict[pair_keys[0]].shape) == 4:
            weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
            weight_down = (
                state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
            )
            if alpha_key in state_dict:
                weight_scale = state_dict[alpha_key].item() / weight_up.shape[1]
            else:
                weight_scale = 1.0
            # adding_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            if len(weight_up.shape) == len(weight_down.shape):
                adding_weight = (
                    alpha
                    * weight_scale
                    * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
                )
            else:
                adding_weight = (
                    alpha
                    * weight_scale
                    * torch.einsum("a b, b c h w -> a c h w", weight_up, weight_down)
                )
        else:
            weight_up = state_dict[pair_keys[0]].to(torch.float32)
            weight_down = state_dict[pair_keys[1]].to(torch.float32)
            if alpha_key in state_dict:
                weight_scale = state_dict[alpha_key].item() / weight_up.shape[1]
            else:
                weight_scale = 1.0
            adding_weight = alpha * weight_scale * torch.mm(weight_up, weight_down)
        adding_weight = adding_weight.to(torch.float16)
        if lora_block_weight:
            if "text" in key:
                adding_weight *= lora_block_weight[0]
            else:
                for idx, layer in enumerate(lora_unet_layers):
                    if layer in key:
                        adding_weight *= lora_block_weight[idx + 1]
                        break

        curr_layer_unload_data = {"layer": curr_layer, "added_weight": adding_weight}
        curr_layer.weight.data += adding_weight

        unload_dict.append(curr_layer_unload_data)
        # update visited list
        for item in pair_keys:
            visited.add(item)
    if need_unload:
        return pipeline, unload_dict
    else:
        return pipeline


# ref https://git.woa.com/innovative_tech/GenerationGroup/VirtualIdol/VidolImageDraw/blob/master/pipeline/draw_pipe.py
def update_pipeline_lora_model_old(
    pipeline: DiffusionPipeline,
    lora: Union[str, Dict],
    alpha: float = 0.75,
    device: str = "cuda",
    lora_prefix_unet: str = "lora_unet",
    lora_prefix_text_encoder: str = "lora_te",
    lora_unet_layers=[
        "lora_unet_down_blocks_0_attentions_0",
        "lora_unet_down_blocks_0_attentions_1",
        "lora_unet_down_blocks_1_attentions_0",
        "lora_unet_down_blocks_1_attentions_1",
        "lora_unet_down_blocks_2_attentions_0",
        "lora_unet_down_blocks_2_attentions_1",
        "lora_unet_mid_block_attentions_0",
        "lora_unet_up_blocks_1_attentions_0",
        "lora_unet_up_blocks_1_attentions_1",
        "lora_unet_up_blocks_1_attentions_2",
        "lora_unet_up_blocks_2_attentions_0",
        "lora_unet_up_blocks_2_attentions_1",
        "lora_unet_up_blocks_2_attentions_2",
        "lora_unet_up_blocks_3_attentions_0",
        "lora_unet_up_blocks_3_attentions_1",
        "lora_unet_up_blocks_3_attentions_2",
    ],
    lora_block_weight_str: Literal["FACE", "ALL"] = "ALL",
    need_unload: bool = False,
):
    """使用 lora 更新pipeline中的unet相关参数

    Args:
        pipeline (DiffusionPipeline): _description_
        lora (Union[str, Dict]): _description_
        alpha (float, optional): _description_. Defaults to 0.75.
        device (str, optional): _description_. Defaults to "cuda".
        lora_prefix_unet (str, optional): _description_. Defaults to "lora_unet".
        lora_prefix_text_encoder (str, optional): _description_. Defaults to "lora_te".
        lora_unet_layers (list, optional): _description_. Defaults to [ "lora_unet_down_blocks_0_attentions_0", "lora_unet_down_blocks_0_attentions_1", "lora_unet_down_blocks_1_attentions_0", "lora_unet_down_blocks_1_attentions_1", "lora_unet_down_blocks_2_attentions_0", "lora_unet_down_blocks_2_attentions_1", "lora_unet_mid_block_attentions_0", "lora_unet_up_blocks_1_attentions_0", "lora_unet_up_blocks_1_attentions_1", "lora_unet_up_blocks_1_attentions_2", "lora_unet_up_blocks_2_attentions_0", "lora_unet_up_blocks_2_attentions_1", "lora_unet_up_blocks_2_attentions_2", "lora_unet_up_blocks_3_attentions_0", "lora_unet_up_blocks_3_attentions_1", "lora_unet_up_blocks_3_attentions_2", ].
        lora_block_weight_str (Literal["FACE", "ALL"], optional): _description_. Defaults to "ALL".
        need_unload (bool, optional): _description_. Defaults to False.

    Returns:
        _type_: _description_
    """
    # ref https://git.woa.com/innovative_tech/GenerationGroup/VirtualIdol/VidolImageDraw/blob/master/pipeline/tool.py#L20
    if lora_block_weight_str is not None:
        lora_block_weight = LORA_BLOCK_WEIGHT_MAP[lora_block_weight_str.upper()]
    if lora_block_weight:
        assert len(lora_block_weight) == 17
    # load lora weight
    if isinstance(lora, str):
        state_dict = load_file(lora, device=device)
    else:
        for k in lora:
            lora[k] = lora[k].to(device)
        state_dict = lora  # state_dict = {}

    visited = set()
    unload_dict = []
    # directly update weight in diffusers model
    for key in state_dict:
        # it is suggested to print out the key, it usually will be something like below
        # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

        # as we have set the alpha beforehand, so just skip
        if ".alpha" in key or key in visited:
            continue

        if "text" in key:
            layer_infos = (
                key.split(".")[0].split(lora_prefix_text_encoder + "_")[-1].split("_")
            )
            curr_layer = pipeline.text_encoder
        else:
            layer_infos = key.split(".")[0].split(lora_prefix_unet + "_")[-1].split("_")
            curr_layer = pipeline.unet

        # find the target layer
        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += "_" + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        pair_keys = []
        if "lora_down" in key:
            pair_keys.append(key.replace("lora_down", "lora_up"))
            pair_keys.append(key)
        else:
            pair_keys.append(key)
            pair_keys.append(key.replace("lora_up", "lora_down"))

        # update weight
        if len(state_dict[pair_keys[0]].shape) == 4:
            weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
            weight_down = (
                state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
            )
            adding_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(
                2
            ).unsqueeze(3)
        else:
            weight_up = state_dict[pair_keys[0]].to(torch.float32)
            weight_down = state_dict[pair_keys[1]].to(torch.float32)
            adding_weight = alpha * torch.mm(weight_up, weight_down)

        if lora_block_weight:
            if "text" in key:
                adding_weight *= lora_block_weight[0]
            else:
                for idx, layer in enumerate(lora_unet_layers):
                    if layer in key:
                        adding_weight *= lora_block_weight[idx + 1]
                        break

        curr_layer_unload_data = {"layer": curr_layer, "added_weight": adding_weight}
        curr_layer.weight.data += adding_weight

        unload_dict.append(curr_layer_unload_data)
        # update visited list
        for item in pair_keys:
            visited.add(item)
    if need_unload:
        return pipeline, unload_dict
    else:
        return pipeline


def update_pipeline_lora_models(
    pipeline: DiffusionPipeline,
    lora_dict: Dict[str, Dict],
    device: str = "cuda",
    need_unload: bool = True,
    lora_prefix_unet: str = "lora_unet",
    lora_prefix_text_encoder: str = "lora_te",
    lora_unet_layers=[
        "lora_unet_down_blocks_0_attentions_0",
        "lora_unet_down_blocks_0_attentions_1",
        "lora_unet_down_blocks_1_attentions_0",
        "lora_unet_down_blocks_1_attentions_1",
        "lora_unet_down_blocks_2_attentions_0",
        "lora_unet_down_blocks_2_attentions_1",
        "lora_unet_mid_block_attentions_0",
        "lora_unet_up_blocks_1_attentions_0",
        "lora_unet_up_blocks_1_attentions_1",
        "lora_unet_up_blocks_1_attentions_2",
        "lora_unet_up_blocks_2_attentions_0",
        "lora_unet_up_blocks_2_attentions_1",
        "lora_unet_up_blocks_2_attentions_2",
        "lora_unet_up_blocks_3_attentions_0",
        "lora_unet_up_blocks_3_attentions_1",
        "lora_unet_up_blocks_3_attentions_2",
    ],
):
    """使用 lora 更新pipeline中的unet相关参数

    Args:
        pipeline (DiffusionPipeline): _description_
        lora_dict (Dict[str, Dict]): _description_
        device (str, optional): _description_. Defaults to "cuda".
        lora_prefix_unet (str, optional): _description_. Defaults to "lora_unet".
        lora_prefix_text_encoder (str, optional): _description_. Defaults to "lora_te".
        lora_unet_layers (list, optional): _description_. Defaults to [ "lora_unet_down_blocks_0_attentions_0", "lora_unet_down_blocks_0_attentions_1", "lora_unet_down_blocks_1_attentions_0", "lora_unet_down_blocks_1_attentions_1", "lora_unet_down_blocks_2_attentions_0", "lora_unet_down_blocks_2_attentions_1", "lora_unet_mid_block_attentions_0", "lora_unet_up_blocks_1_attentions_0", "lora_unet_up_blocks_1_attentions_1", "lora_unet_up_blocks_1_attentions_2", "lora_unet_up_blocks_2_attentions_0", "lora_unet_up_blocks_2_attentions_1", "lora_unet_up_blocks_2_attentions_2", "lora_unet_up_blocks_3_attentions_0", "lora_unet_up_blocks_3_attentions_1", "lora_unet_up_blocks_3_attentions_2", ].

    Returns:
        _type_: _description_
    """
    unload_dicts = []
    for lora, value in lora_dict.items():
        lora_name = os.path.basename(lora).replace(".safetensors", "")
        strength_offset = value.get("strength_offset", 0.0)
        alpha = value.get("strength", 1.0)
        alpha += strength_offset
        lora_weight_str = value.get("lora_block_weight", "ALL")
        lora = load_file(lora)
        pipeline, unload_dict = update_pipeline_lora_model(
            pipeline,
            lora=lora,
            device=device,
            alpha=alpha,
            lora_prefix_unet=lora_prefix_unet,
            lora_prefix_text_encoder=lora_prefix_text_encoder,
            lora_unet_layers=lora_unet_layers,
            lora_block_weight_str=lora_weight_str,
            need_unload=True,
        )
        print(
            "Update LoRA {} with alpha {} and weight {}".format(
                lora_name, alpha, lora_weight_str
            )
        )
    unload_dicts += unload_dict
    return pipeline, unload_dicts


def unload_lora(unload_dict: List[Dict[str, nn.Module]]):
    for layer_data in unload_dict:
        layer = layer_data["layer"]
        added_weight = layer_data["added_weight"]
        layer.weight.data -= added_weight

    gc.collect()
    torch.cuda.empty_cache()


def load_motion_lora_weights(
    animation_pipeline,
    motion_module_lora_configs=[],
):
    for motion_module_lora_config in motion_module_lora_configs:
        path, alpha = (
            motion_module_lora_config["path"],
            motion_module_lora_config["alpha"],
        )
        print(f"load motion LoRA from {path}")

        motion_lora_state_dict = torch.load(path, map_location="cpu")
        motion_lora_state_dict = (
            motion_lora_state_dict["state_dict"]
            if "state_dict" in motion_lora_state_dict
            else motion_lora_state_dict
        )

        animation_pipeline = convert_motion_lora_ckpt_to_diffusers(
            animation_pipeline, motion_lora_state_dict, alpha
        )

    return animation_pipeline