import gradio as gr from transformers import pipeline token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction", aggregation_strategy="simple") token_knowledge_classifier = pipeline(model="jjzha/jobbert_knowledge_extraction", aggregation_strategy="simple") examples = [ "Knowing Python is a plus.", ] def ner(text): output_skills = token_skill_classifier(text) for result in output_skills: if result.get("entity"): tag = result["entity"] result["entity"] = tag + "-skill" output_knowledge = token_knowledge_classifier(text) for result in output_knowledge: if result.get("entity"): tag = result["entity"] result["entity"] = tag + "-knowledge" output = output_skills + output_knowledge return {"text": text, "entities": output} demo = gr.Interface(fn=ner, inputs=gr.Textbox(placeholder="Enter sentence here..."), outputs=gr.HighlightedText(), examples=examples) demo.launch()