Spaces:
Runtime error
Runtime error
jjourney1125
commited on
Commit
·
19bb687
1
Parent(s):
603bf25
Init commit
Browse files- app.py +45 -0
- butterflyx4.png +0 -0
- main_test_swin2sr.py +302 -0
- models/network_swin2sr.py +1010 -0
- requirements.txt +5 -0
- utils/util_calculate_psnr_ssim.py +320 -0
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
model_path = 'experiments/pretrained_models/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth'
|
8 |
+
|
9 |
+
if os.path.exists(model_path):
|
10 |
+
print(f'loading model from {model_path}')
|
11 |
+
else:
|
12 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
13 |
+
url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(model_path))
|
14 |
+
r = requests.get(url, allow_redirects=True)
|
15 |
+
print(f'downloading model {model_path}')
|
16 |
+
open(model_path, 'wb').write(r.content)
|
17 |
+
|
18 |
+
os.makedirs("test", exist_ok=True)
|
19 |
+
|
20 |
+
def inference(img):
|
21 |
+
|
22 |
+
cv2.imwrite("test/1.png", cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
23 |
+
# basewidth = 256
|
24 |
+
# wpercent = (basewidth/float(img.size[0]))
|
25 |
+
# hsize = int((float(img.size[1])*float(wpercent)))
|
26 |
+
# img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
27 |
+
#img.save("test/1.jpg", "JPEG")
|
28 |
+
os.system('python main_test_swin2sr.py --task real_sr --model_path experiments/pretrained_models/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth --folder_lq test --scale 4')
|
29 |
+
return 'results/swin2sr_real_sr_x4/1_Swin2SR.png'
|
30 |
+
|
31 |
+
title = "Swin2SR"
|
32 |
+
description = "Gradio demo for Swin2SR."
|
33 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration></a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
|
34 |
+
|
35 |
+
examples=[['butterflyx4.png']]
|
36 |
+
gr.Interface(
|
37 |
+
inference,
|
38 |
+
"image",
|
39 |
+
"image",
|
40 |
+
title=title,
|
41 |
+
description=description,
|
42 |
+
article=article,
|
43 |
+
examples=examples,
|
44 |
+
).launch(enable_queue=True,
|
45 |
+
share=True)
|
butterflyx4.png
ADDED
main_test_swin2sr.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import numpy as np
|
5 |
+
from collections import OrderedDict
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
|
10 |
+
from models.network_swin2sr import Swin2SR as net
|
11 |
+
from utils import util_calculate_psnr_ssim as util
|
12 |
+
|
13 |
+
|
14 |
+
def main():
|
15 |
+
parser = argparse.ArgumentParser()
|
16 |
+
parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, '
|
17 |
+
'gray_dn, color_dn, jpeg_car, color_jpeg_car')
|
18 |
+
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
|
19 |
+
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
|
20 |
+
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
|
21 |
+
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training Swin2SR. '
|
22 |
+
'Just used to differentiate two different settings in Table 2 of the paper. '
|
23 |
+
'Images are NOT tested patch by patch.')
|
24 |
+
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
|
25 |
+
parser.add_argument('--model_path', type=str,
|
26 |
+
default='model_zoo/swin2sr/Swin2SR_ClassicalSR_X2_64.pth')
|
27 |
+
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder')
|
28 |
+
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
|
29 |
+
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
|
30 |
+
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
|
31 |
+
parser.add_argument('--save_img_only', default=False, action='store_true', help='save image and do not evaluate')
|
32 |
+
args = parser.parse_args()
|
33 |
+
|
34 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
# set up model
|
36 |
+
if os.path.exists(args.model_path):
|
37 |
+
print(f'loading model from {args.model_path}')
|
38 |
+
else:
|
39 |
+
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
|
40 |
+
url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(args.model_path))
|
41 |
+
r = requests.get(url, allow_redirects=True)
|
42 |
+
print(f'downloading model {args.model_path}')
|
43 |
+
open(args.model_path, 'wb').write(r.content)
|
44 |
+
|
45 |
+
model = define_model(args)
|
46 |
+
model.eval()
|
47 |
+
model = model.to(device)
|
48 |
+
|
49 |
+
# setup folder and path
|
50 |
+
folder, save_dir, border, window_size = setup(args)
|
51 |
+
os.makedirs(save_dir, exist_ok=True)
|
52 |
+
test_results = OrderedDict()
|
53 |
+
test_results['psnr'] = []
|
54 |
+
test_results['ssim'] = []
|
55 |
+
test_results['psnr_y'] = []
|
56 |
+
test_results['ssim_y'] = []
|
57 |
+
test_results['psnrb'] = []
|
58 |
+
test_results['psnrb_y'] = []
|
59 |
+
psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
|
60 |
+
|
61 |
+
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
|
62 |
+
# read image
|
63 |
+
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
|
64 |
+
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
|
65 |
+
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
|
66 |
+
|
67 |
+
# inference
|
68 |
+
with torch.no_grad():
|
69 |
+
# pad input image to be a multiple of window_size
|
70 |
+
_, _, h_old, w_old = img_lq.size()
|
71 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
72 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
73 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
|
74 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
|
75 |
+
output = test(img_lq, model, args, window_size)
|
76 |
+
|
77 |
+
if args.task == 'compressed_sr':
|
78 |
+
output = output[0][..., :h_old * args.scale, :w_old * args.scale]
|
79 |
+
else:
|
80 |
+
output = output[..., :h_old * args.scale, :w_old * args.scale]
|
81 |
+
|
82 |
+
# save image
|
83 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
84 |
+
if output.ndim == 3:
|
85 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
86 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
87 |
+
cv2.imwrite(f'{save_dir}/{imgname}_Swin2SR.png', output)
|
88 |
+
|
89 |
+
|
90 |
+
# evaluate psnr/ssim/psnr_b
|
91 |
+
if img_gt is not None:
|
92 |
+
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
|
93 |
+
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
|
94 |
+
img_gt = np.squeeze(img_gt)
|
95 |
+
|
96 |
+
psnr = util.calculate_psnr(output, img_gt, crop_border=border)
|
97 |
+
ssim = util.calculate_ssim(output, img_gt, crop_border=border)
|
98 |
+
test_results['psnr'].append(psnr)
|
99 |
+
test_results['ssim'].append(ssim)
|
100 |
+
if img_gt.ndim == 3: # RGB image
|
101 |
+
psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
|
102 |
+
ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
|
103 |
+
test_results['psnr_y'].append(psnr_y)
|
104 |
+
test_results['ssim_y'].append(ssim_y)
|
105 |
+
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
106 |
+
psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
|
107 |
+
test_results['psnrb'].append(psnrb)
|
108 |
+
if args.task in ['color_jpeg_car']:
|
109 |
+
psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
|
110 |
+
test_results['psnrb_y'].append(psnrb_y)
|
111 |
+
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
|
112 |
+
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
|
113 |
+
format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
|
114 |
+
else:
|
115 |
+
print('Testing {:d} {:20s}'.format(idx, imgname))
|
116 |
+
|
117 |
+
# summarize psnr/ssim
|
118 |
+
if img_gt is not None:
|
119 |
+
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
|
120 |
+
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
|
121 |
+
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
|
122 |
+
if img_gt.ndim == 3:
|
123 |
+
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
|
124 |
+
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
|
125 |
+
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
|
126 |
+
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
127 |
+
ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
|
128 |
+
print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
|
129 |
+
if args.task in ['color_jpeg_car']:
|
130 |
+
ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
|
131 |
+
print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))
|
132 |
+
|
133 |
+
|
134 |
+
def define_model(args):
|
135 |
+
# 001 classical image sr
|
136 |
+
if args.task == 'classical_sr':
|
137 |
+
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
138 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
139 |
+
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
|
140 |
+
param_key_g = 'params'
|
141 |
+
|
142 |
+
# 002 lightweight image sr
|
143 |
+
# use 'pixelshuffledirect' to save parameters
|
144 |
+
elif args.task in ['lightweight_sr']:
|
145 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
146 |
+
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
|
147 |
+
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
|
148 |
+
param_key_g = 'params'
|
149 |
+
|
150 |
+
elif args.task == 'compressed_sr':
|
151 |
+
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
152 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
153 |
+
mlp_ratio=2, upsampler='pixelshuffle_aux', resi_connection='1conv')
|
154 |
+
param_key_g = 'params'
|
155 |
+
|
156 |
+
# 003 real-world image sr
|
157 |
+
elif args.task == 'real_sr':
|
158 |
+
if not args.large_model:
|
159 |
+
# use 'nearest+conv' to avoid block artifacts
|
160 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
161 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
162 |
+
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
|
163 |
+
else:
|
164 |
+
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
|
165 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
166 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
|
167 |
+
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
168 |
+
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
169 |
+
param_key_g = 'params_ema'
|
170 |
+
|
171 |
+
# 006 grayscale JPEG compression artifact reduction
|
172 |
+
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
173 |
+
elif args.task == 'jpeg_car':
|
174 |
+
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
|
175 |
+
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
176 |
+
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
177 |
+
param_key_g = 'params'
|
178 |
+
|
179 |
+
# 006 color JPEG compression artifact reduction
|
180 |
+
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
181 |
+
elif args.task == 'color_jpeg_car':
|
182 |
+
model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
|
183 |
+
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
184 |
+
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
185 |
+
param_key_g = 'params'
|
186 |
+
|
187 |
+
pretrained_model = torch.load(args.model_path)
|
188 |
+
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
|
189 |
+
|
190 |
+
return model
|
191 |
+
|
192 |
+
|
193 |
+
def setup(args):
|
194 |
+
# 001 classical image sr/ 002 lightweight image sr
|
195 |
+
if args.task in ['classical_sr', 'lightweight_sr', 'compressed_sr']:
|
196 |
+
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
197 |
+
if args.save_img_only:
|
198 |
+
folder = args.folder_lq
|
199 |
+
else:
|
200 |
+
folder = args.folder_gt
|
201 |
+
border = args.scale
|
202 |
+
window_size = 8
|
203 |
+
|
204 |
+
# 003 real-world image sr
|
205 |
+
elif args.task in ['real_sr']:
|
206 |
+
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
207 |
+
if args.large_model:
|
208 |
+
save_dir += '_large'
|
209 |
+
folder = args.folder_lq
|
210 |
+
border = 0
|
211 |
+
window_size = 8
|
212 |
+
|
213 |
+
# 006 JPEG compression artifact reduction
|
214 |
+
elif args.task in ['jpeg_car', 'color_jpeg_car']:
|
215 |
+
save_dir = f'results/swin2sr_{args.task}_jpeg{args.jpeg}'
|
216 |
+
folder = args.folder_gt
|
217 |
+
border = 0
|
218 |
+
window_size = 7
|
219 |
+
|
220 |
+
return folder, save_dir, border, window_size
|
221 |
+
|
222 |
+
|
223 |
+
def get_image_pair(args, path):
|
224 |
+
(imgname, imgext) = os.path.splitext(os.path.basename(path))
|
225 |
+
|
226 |
+
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
|
227 |
+
if args.task in ['classical_sr', 'lightweight_sr']:
|
228 |
+
if args.save_img_only:
|
229 |
+
img_gt = None
|
230 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
231 |
+
else:
|
232 |
+
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
233 |
+
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
|
234 |
+
np.float32) / 255.
|
235 |
+
|
236 |
+
elif args.task in ['compressed_sr']:
|
237 |
+
if args.save_img_only:
|
238 |
+
img_gt = None
|
239 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
240 |
+
else:
|
241 |
+
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
242 |
+
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}.jpg', cv2.IMREAD_COLOR).astype(
|
243 |
+
np.float32) / 255.
|
244 |
+
|
245 |
+
# 003 real-world image sr (load lq image only)
|
246 |
+
elif args.task in ['real_sr', 'lightweight_sr_infer']:
|
247 |
+
img_gt = None
|
248 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
249 |
+
|
250 |
+
# 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
251 |
+
elif args.task in ['jpeg_car']:
|
252 |
+
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
253 |
+
if img_gt.ndim != 2:
|
254 |
+
img_gt = util.bgr2ycbcr(img_gt, y_only=True)
|
255 |
+
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
256 |
+
img_lq = cv2.imdecode(encimg, 0)
|
257 |
+
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
|
258 |
+
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
|
259 |
+
|
260 |
+
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
261 |
+
elif args.task in ['color_jpeg_car']:
|
262 |
+
img_gt = cv2.imread(path)
|
263 |
+
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
264 |
+
img_lq = cv2.imdecode(encimg, 1)
|
265 |
+
img_gt = img_gt.astype(np.float32)/ 255.
|
266 |
+
img_lq = img_lq.astype(np.float32)/ 255.
|
267 |
+
|
268 |
+
return imgname, img_lq, img_gt
|
269 |
+
|
270 |
+
|
271 |
+
def test(img_lq, model, args, window_size):
|
272 |
+
if args.tile is None:
|
273 |
+
# test the image as a whole
|
274 |
+
output = model(img_lq)
|
275 |
+
else:
|
276 |
+
# test the image tile by tile
|
277 |
+
b, c, h, w = img_lq.size()
|
278 |
+
tile = min(args.tile, h, w)
|
279 |
+
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
280 |
+
tile_overlap = args.tile_overlap
|
281 |
+
sf = args.scale
|
282 |
+
|
283 |
+
stride = tile - tile_overlap
|
284 |
+
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
|
285 |
+
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
|
286 |
+
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
|
287 |
+
W = torch.zeros_like(E)
|
288 |
+
|
289 |
+
for h_idx in h_idx_list:
|
290 |
+
for w_idx in w_idx_list:
|
291 |
+
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
|
292 |
+
out_patch = model(in_patch)
|
293 |
+
out_patch_mask = torch.ones_like(out_patch)
|
294 |
+
|
295 |
+
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
|
296 |
+
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
|
297 |
+
output = E.div_(W)
|
298 |
+
|
299 |
+
return output
|
300 |
+
|
301 |
+
if __name__ == '__main__':
|
302 |
+
main()
|
models/network_swin2sr.py
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/
|
3 |
+
# Written by Conde and Choi et al.
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import math
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
|
14 |
+
|
15 |
+
class Mlp(nn.Module):
|
16 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
17 |
+
super().__init__()
|
18 |
+
out_features = out_features or in_features
|
19 |
+
hidden_features = hidden_features or in_features
|
20 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
21 |
+
self.act = act_layer()
|
22 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
23 |
+
self.drop = nn.Dropout(drop)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.fc1(x)
|
27 |
+
x = self.act(x)
|
28 |
+
x = self.drop(x)
|
29 |
+
x = self.fc2(x)
|
30 |
+
x = self.drop(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def window_partition(x, window_size):
|
35 |
+
"""
|
36 |
+
Args:
|
37 |
+
x: (B, H, W, C)
|
38 |
+
window_size (int): window size
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
Returns:
|
56 |
+
x: (B, H, W, C)
|
57 |
+
"""
|
58 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
59 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
60 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class WindowAttention(nn.Module):
|
64 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
65 |
+
It supports both of shifted and non-shifted window.
|
66 |
+
Args:
|
67 |
+
dim (int): Number of input channels.
|
68 |
+
window_size (tuple[int]): The height and width of the window.
|
69 |
+
num_heads (int): Number of attention heads.
|
70 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
71 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
72 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
73 |
+
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
77 |
+
pretrained_window_size=[0, 0]):
|
78 |
+
|
79 |
+
super().__init__()
|
80 |
+
self.dim = dim
|
81 |
+
self.window_size = window_size # Wh, Ww
|
82 |
+
self.pretrained_window_size = pretrained_window_size
|
83 |
+
self.num_heads = num_heads
|
84 |
+
|
85 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
86 |
+
|
87 |
+
# mlp to generate continuous relative position bias
|
88 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
89 |
+
nn.ReLU(inplace=True),
|
90 |
+
nn.Linear(512, num_heads, bias=False))
|
91 |
+
|
92 |
+
# get relative_coords_table
|
93 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
94 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
95 |
+
relative_coords_table = torch.stack(
|
96 |
+
torch.meshgrid([relative_coords_h,
|
97 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
98 |
+
if pretrained_window_size[0] > 0:
|
99 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
100 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
101 |
+
else:
|
102 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
103 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
104 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
105 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
106 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
107 |
+
|
108 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
124 |
+
if qkv_bias:
|
125 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
126 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
127 |
+
else:
|
128 |
+
self.q_bias = None
|
129 |
+
self.v_bias = None
|
130 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
131 |
+
self.proj = nn.Linear(dim, dim)
|
132 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
133 |
+
self.softmax = nn.Softmax(dim=-1)
|
134 |
+
|
135 |
+
def forward(self, x, mask=None):
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
x: input features with shape of (num_windows*B, N, C)
|
139 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
+
"""
|
141 |
+
B_, N, C = x.shape
|
142 |
+
qkv_bias = None
|
143 |
+
if self.q_bias is not None:
|
144 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
145 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
146 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
147 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
# cosine attention
|
150 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
151 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
|
152 |
+
attn = attn * logit_scale
|
153 |
+
|
154 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
155 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
156 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
158 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
159 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
nW = mask.shape[0]
|
163 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
164 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
165 |
+
attn = self.softmax(attn)
|
166 |
+
else:
|
167 |
+
attn = self.softmax(attn)
|
168 |
+
|
169 |
+
attn = self.attn_drop(attn)
|
170 |
+
|
171 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
172 |
+
x = self.proj(x)
|
173 |
+
x = self.proj_drop(x)
|
174 |
+
return x
|
175 |
+
|
176 |
+
def extra_repr(self) -> str:
|
177 |
+
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
178 |
+
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
179 |
+
|
180 |
+
def flops(self, N):
|
181 |
+
# calculate flops for 1 window with token length of N
|
182 |
+
flops = 0
|
183 |
+
# qkv = self.qkv(x)
|
184 |
+
flops += N * self.dim * 3 * self.dim
|
185 |
+
# attn = (q @ k.transpose(-2, -1))
|
186 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
187 |
+
# x = (attn @ v)
|
188 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
189 |
+
# x = self.proj(x)
|
190 |
+
flops += N * self.dim * self.dim
|
191 |
+
return flops
|
192 |
+
|
193 |
+
class SwinTransformerBlock(nn.Module):
|
194 |
+
r""" Swin Transformer Block.
|
195 |
+
Args:
|
196 |
+
dim (int): Number of input channels.
|
197 |
+
input_resolution (tuple[int]): Input resulotion.
|
198 |
+
num_heads (int): Number of attention heads.
|
199 |
+
window_size (int): Window size.
|
200 |
+
shift_size (int): Shift size for SW-MSA.
|
201 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
202 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
203 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
204 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
205 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
206 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
207 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
208 |
+
pretrained_window_size (int): Window size in pre-training.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
212 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
|
213 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
214 |
+
super().__init__()
|
215 |
+
self.dim = dim
|
216 |
+
self.input_resolution = input_resolution
|
217 |
+
self.num_heads = num_heads
|
218 |
+
self.window_size = window_size
|
219 |
+
self.shift_size = shift_size
|
220 |
+
self.mlp_ratio = mlp_ratio
|
221 |
+
if min(self.input_resolution) <= self.window_size:
|
222 |
+
# if window size is larger than input resolution, we don't partition windows
|
223 |
+
self.shift_size = 0
|
224 |
+
self.window_size = min(self.input_resolution)
|
225 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
226 |
+
|
227 |
+
self.norm1 = norm_layer(dim)
|
228 |
+
self.attn = WindowAttention(
|
229 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
230 |
+
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
231 |
+
pretrained_window_size=to_2tuple(pretrained_window_size))
|
232 |
+
|
233 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
234 |
+
self.norm2 = norm_layer(dim)
|
235 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
236 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
237 |
+
|
238 |
+
if self.shift_size > 0:
|
239 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
240 |
+
else:
|
241 |
+
attn_mask = None
|
242 |
+
|
243 |
+
self.register_buffer("attn_mask", attn_mask)
|
244 |
+
|
245 |
+
def calculate_mask(self, x_size):
|
246 |
+
# calculate attention mask for SW-MSA
|
247 |
+
H, W = x_size
|
248 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
249 |
+
h_slices = (slice(0, -self.window_size),
|
250 |
+
slice(-self.window_size, -self.shift_size),
|
251 |
+
slice(-self.shift_size, None))
|
252 |
+
w_slices = (slice(0, -self.window_size),
|
253 |
+
slice(-self.window_size, -self.shift_size),
|
254 |
+
slice(-self.shift_size, None))
|
255 |
+
cnt = 0
|
256 |
+
for h in h_slices:
|
257 |
+
for w in w_slices:
|
258 |
+
img_mask[:, h, w, :] = cnt
|
259 |
+
cnt += 1
|
260 |
+
|
261 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
262 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
263 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
264 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
265 |
+
|
266 |
+
return attn_mask
|
267 |
+
|
268 |
+
def forward(self, x, x_size):
|
269 |
+
H, W = x_size
|
270 |
+
B, L, C = x.shape
|
271 |
+
#assert L == H * W, "input feature has wrong size"
|
272 |
+
|
273 |
+
shortcut = x
|
274 |
+
x = x.view(B, H, W, C)
|
275 |
+
|
276 |
+
# cyclic shift
|
277 |
+
if self.shift_size > 0:
|
278 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
279 |
+
else:
|
280 |
+
shifted_x = x
|
281 |
+
|
282 |
+
# partition windows
|
283 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
284 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
285 |
+
|
286 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
287 |
+
if self.input_resolution == x_size:
|
288 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
289 |
+
else:
|
290 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
291 |
+
|
292 |
+
# merge windows
|
293 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
294 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
295 |
+
|
296 |
+
# reverse cyclic shift
|
297 |
+
if self.shift_size > 0:
|
298 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
299 |
+
else:
|
300 |
+
x = shifted_x
|
301 |
+
x = x.view(B, H * W, C)
|
302 |
+
x = shortcut + self.drop_path(self.norm1(x))
|
303 |
+
|
304 |
+
# FFN
|
305 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
306 |
+
|
307 |
+
return x
|
308 |
+
|
309 |
+
def extra_repr(self) -> str:
|
310 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
311 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
312 |
+
|
313 |
+
def flops(self):
|
314 |
+
flops = 0
|
315 |
+
H, W = self.input_resolution
|
316 |
+
# norm1
|
317 |
+
flops += self.dim * H * W
|
318 |
+
# W-MSA/SW-MSA
|
319 |
+
nW = H * W / self.window_size / self.window_size
|
320 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
321 |
+
# mlp
|
322 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
323 |
+
# norm2
|
324 |
+
flops += self.dim * H * W
|
325 |
+
return flops
|
326 |
+
|
327 |
+
class PatchMerging(nn.Module):
|
328 |
+
r""" Patch Merging Layer.
|
329 |
+
Args:
|
330 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
331 |
+
dim (int): Number of input channels.
|
332 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
336 |
+
super().__init__()
|
337 |
+
self.input_resolution = input_resolution
|
338 |
+
self.dim = dim
|
339 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
340 |
+
self.norm = norm_layer(2 * dim)
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
"""
|
344 |
+
x: B, H*W, C
|
345 |
+
"""
|
346 |
+
H, W = self.input_resolution
|
347 |
+
B, L, C = x.shape
|
348 |
+
assert L == H * W, "input feature has wrong size"
|
349 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
350 |
+
|
351 |
+
x = x.view(B, H, W, C)
|
352 |
+
|
353 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
354 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
355 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
356 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
357 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
358 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
359 |
+
|
360 |
+
x = self.reduction(x)
|
361 |
+
x = self.norm(x)
|
362 |
+
|
363 |
+
return x
|
364 |
+
|
365 |
+
def extra_repr(self) -> str:
|
366 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
367 |
+
|
368 |
+
def flops(self):
|
369 |
+
H, W = self.input_resolution
|
370 |
+
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
371 |
+
flops += H * W * self.dim // 2
|
372 |
+
return flops
|
373 |
+
|
374 |
+
class BasicLayer(nn.Module):
|
375 |
+
""" A basic Swin Transformer layer for one stage.
|
376 |
+
Args:
|
377 |
+
dim (int): Number of input channels.
|
378 |
+
input_resolution (tuple[int]): Input resolution.
|
379 |
+
depth (int): Number of blocks.
|
380 |
+
num_heads (int): Number of attention heads.
|
381 |
+
window_size (int): Local window size.
|
382 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
383 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
384 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
385 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
386 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
387 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
388 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
389 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
390 |
+
pretrained_window_size (int): Local window size in pre-training.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
394 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
395 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
396 |
+
pretrained_window_size=0):
|
397 |
+
|
398 |
+
super().__init__()
|
399 |
+
self.dim = dim
|
400 |
+
self.input_resolution = input_resolution
|
401 |
+
self.depth = depth
|
402 |
+
self.use_checkpoint = use_checkpoint
|
403 |
+
|
404 |
+
# build blocks
|
405 |
+
self.blocks = nn.ModuleList([
|
406 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
407 |
+
num_heads=num_heads, window_size=window_size,
|
408 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
409 |
+
mlp_ratio=mlp_ratio,
|
410 |
+
qkv_bias=qkv_bias,
|
411 |
+
drop=drop, attn_drop=attn_drop,
|
412 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
413 |
+
norm_layer=norm_layer,
|
414 |
+
pretrained_window_size=pretrained_window_size)
|
415 |
+
for i in range(depth)])
|
416 |
+
|
417 |
+
# patch merging layer
|
418 |
+
if downsample is not None:
|
419 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
420 |
+
else:
|
421 |
+
self.downsample = None
|
422 |
+
|
423 |
+
def forward(self, x, x_size):
|
424 |
+
for blk in self.blocks:
|
425 |
+
if self.use_checkpoint:
|
426 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
427 |
+
else:
|
428 |
+
x = blk(x, x_size)
|
429 |
+
if self.downsample is not None:
|
430 |
+
x = self.downsample(x)
|
431 |
+
return x
|
432 |
+
|
433 |
+
def extra_repr(self) -> str:
|
434 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
435 |
+
|
436 |
+
def flops(self):
|
437 |
+
flops = 0
|
438 |
+
for blk in self.blocks:
|
439 |
+
flops += blk.flops()
|
440 |
+
if self.downsample is not None:
|
441 |
+
flops += self.downsample.flops()
|
442 |
+
return flops
|
443 |
+
|
444 |
+
def _init_respostnorm(self):
|
445 |
+
for blk in self.blocks:
|
446 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
447 |
+
nn.init.constant_(blk.norm1.weight, 0)
|
448 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
449 |
+
nn.init.constant_(blk.norm2.weight, 0)
|
450 |
+
|
451 |
+
class PatchEmbed(nn.Module):
|
452 |
+
r""" Image to Patch Embedding
|
453 |
+
Args:
|
454 |
+
img_size (int): Image size. Default: 224.
|
455 |
+
patch_size (int): Patch token size. Default: 4.
|
456 |
+
in_chans (int): Number of input image channels. Default: 3.
|
457 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
458 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
459 |
+
"""
|
460 |
+
|
461 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
462 |
+
super().__init__()
|
463 |
+
img_size = to_2tuple(img_size)
|
464 |
+
patch_size = to_2tuple(patch_size)
|
465 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
466 |
+
self.img_size = img_size
|
467 |
+
self.patch_size = patch_size
|
468 |
+
self.patches_resolution = patches_resolution
|
469 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
470 |
+
|
471 |
+
self.in_chans = in_chans
|
472 |
+
self.embed_dim = embed_dim
|
473 |
+
|
474 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
475 |
+
if norm_layer is not None:
|
476 |
+
self.norm = norm_layer(embed_dim)
|
477 |
+
else:
|
478 |
+
self.norm = None
|
479 |
+
|
480 |
+
def forward(self, x):
|
481 |
+
B, C, H, W = x.shape
|
482 |
+
# FIXME look at relaxing size constraints
|
483 |
+
# assert H == self.img_size[0] and W == self.img_size[1],
|
484 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
485 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
486 |
+
if self.norm is not None:
|
487 |
+
x = self.norm(x)
|
488 |
+
return x
|
489 |
+
|
490 |
+
def flops(self):
|
491 |
+
Ho, Wo = self.patches_resolution
|
492 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
493 |
+
if self.norm is not None:
|
494 |
+
flops += Ho * Wo * self.embed_dim
|
495 |
+
return flops
|
496 |
+
|
497 |
+
class RSTB(nn.Module):
|
498 |
+
"""Residual Swin Transformer Block (RSTB).
|
499 |
+
Args:
|
500 |
+
dim (int): Number of input channels.
|
501 |
+
input_resolution (tuple[int]): Input resolution.
|
502 |
+
depth (int): Number of blocks.
|
503 |
+
num_heads (int): Number of attention heads.
|
504 |
+
window_size (int): Local window size.
|
505 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
506 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
507 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
508 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
509 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
510 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
511 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
512 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
513 |
+
img_size: Input image size.
|
514 |
+
patch_size: Patch size.
|
515 |
+
resi_connection: The convolutional block before residual connection.
|
516 |
+
"""
|
517 |
+
|
518 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
519 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
520 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
521 |
+
img_size=224, patch_size=4, resi_connection='1conv'):
|
522 |
+
super(RSTB, self).__init__()
|
523 |
+
|
524 |
+
self.dim = dim
|
525 |
+
self.input_resolution = input_resolution
|
526 |
+
|
527 |
+
self.residual_group = BasicLayer(dim=dim,
|
528 |
+
input_resolution=input_resolution,
|
529 |
+
depth=depth,
|
530 |
+
num_heads=num_heads,
|
531 |
+
window_size=window_size,
|
532 |
+
mlp_ratio=mlp_ratio,
|
533 |
+
qkv_bias=qkv_bias,
|
534 |
+
drop=drop, attn_drop=attn_drop,
|
535 |
+
drop_path=drop_path,
|
536 |
+
norm_layer=norm_layer,
|
537 |
+
downsample=downsample,
|
538 |
+
use_checkpoint=use_checkpoint)
|
539 |
+
|
540 |
+
if resi_connection == '1conv':
|
541 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
542 |
+
elif resi_connection == '3conv':
|
543 |
+
# to save parameters and memory
|
544 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
545 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
546 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
547 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
548 |
+
|
549 |
+
self.patch_embed = PatchEmbed(
|
550 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
551 |
+
norm_layer=None)
|
552 |
+
|
553 |
+
self.patch_unembed = PatchUnEmbed(
|
554 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
555 |
+
norm_layer=None)
|
556 |
+
|
557 |
+
def forward(self, x, x_size):
|
558 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
559 |
+
|
560 |
+
def flops(self):
|
561 |
+
flops = 0
|
562 |
+
flops += self.residual_group.flops()
|
563 |
+
H, W = self.input_resolution
|
564 |
+
flops += H * W * self.dim * self.dim * 9
|
565 |
+
flops += self.patch_embed.flops()
|
566 |
+
flops += self.patch_unembed.flops()
|
567 |
+
|
568 |
+
return flops
|
569 |
+
|
570 |
+
class PatchUnEmbed(nn.Module):
|
571 |
+
r""" Image to Patch Unembedding
|
572 |
+
Args:
|
573 |
+
img_size (int): Image size. Default: 224.
|
574 |
+
patch_size (int): Patch token size. Default: 4.
|
575 |
+
in_chans (int): Number of input image channels. Default: 3.
|
576 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
577 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
578 |
+
"""
|
579 |
+
|
580 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
581 |
+
super().__init__()
|
582 |
+
img_size = to_2tuple(img_size)
|
583 |
+
patch_size = to_2tuple(patch_size)
|
584 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
585 |
+
self.img_size = img_size
|
586 |
+
self.patch_size = patch_size
|
587 |
+
self.patches_resolution = patches_resolution
|
588 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
589 |
+
|
590 |
+
self.in_chans = in_chans
|
591 |
+
self.embed_dim = embed_dim
|
592 |
+
|
593 |
+
def forward(self, x, x_size):
|
594 |
+
B, HW, C = x.shape
|
595 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
596 |
+
return x
|
597 |
+
|
598 |
+
def flops(self):
|
599 |
+
flops = 0
|
600 |
+
return flops
|
601 |
+
|
602 |
+
|
603 |
+
class Upsample(nn.Sequential):
|
604 |
+
"""Upsample module.
|
605 |
+
Args:
|
606 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
607 |
+
num_feat (int): Channel number of intermediate features.
|
608 |
+
"""
|
609 |
+
|
610 |
+
def __init__(self, scale, num_feat):
|
611 |
+
m = []
|
612 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
613 |
+
for _ in range(int(math.log(scale, 2))):
|
614 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
615 |
+
m.append(nn.PixelShuffle(2))
|
616 |
+
elif scale == 3:
|
617 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
618 |
+
m.append(nn.PixelShuffle(3))
|
619 |
+
else:
|
620 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
621 |
+
super(Upsample, self).__init__(*m)
|
622 |
+
|
623 |
+
class Upsample_hf(nn.Sequential):
|
624 |
+
"""Upsample module.
|
625 |
+
Args:
|
626 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
627 |
+
num_feat (int): Channel number of intermediate features.
|
628 |
+
"""
|
629 |
+
|
630 |
+
def __init__(self, scale, num_feat):
|
631 |
+
m = []
|
632 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
633 |
+
for _ in range(int(math.log(scale, 2))):
|
634 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
635 |
+
m.append(nn.PixelShuffle(2))
|
636 |
+
elif scale == 3:
|
637 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
638 |
+
m.append(nn.PixelShuffle(3))
|
639 |
+
else:
|
640 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
641 |
+
super(Upsample_hf, self).__init__(*m)
|
642 |
+
|
643 |
+
|
644 |
+
class UpsampleOneStep(nn.Sequential):
|
645 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
646 |
+
Used in lightweight SR to save parameters.
|
647 |
+
Args:
|
648 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
649 |
+
num_feat (int): Channel number of intermediate features.
|
650 |
+
"""
|
651 |
+
|
652 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
653 |
+
self.num_feat = num_feat
|
654 |
+
self.input_resolution = input_resolution
|
655 |
+
m = []
|
656 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
657 |
+
m.append(nn.PixelShuffle(scale))
|
658 |
+
super(UpsampleOneStep, self).__init__(*m)
|
659 |
+
|
660 |
+
def flops(self):
|
661 |
+
H, W = self.input_resolution
|
662 |
+
flops = H * W * self.num_feat * 3 * 9
|
663 |
+
return flops
|
664 |
+
|
665 |
+
|
666 |
+
|
667 |
+
class Swin2SR(nn.Module):
|
668 |
+
r""" Swin2SR
|
669 |
+
A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
|
670 |
+
Args:
|
671 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
672 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
673 |
+
in_chans (int): Number of input image channels. Default: 3
|
674 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
675 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
676 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
677 |
+
window_size (int): Window size. Default: 7
|
678 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
679 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
680 |
+
drop_rate (float): Dropout rate. Default: 0
|
681 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
682 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
683 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
684 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
685 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
686 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
687 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
688 |
+
img_range: Image range. 1. or 255.
|
689 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
690 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
691 |
+
"""
|
692 |
+
|
693 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
694 |
+
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
695 |
+
window_size=7, mlp_ratio=4., qkv_bias=True,
|
696 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
697 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
698 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
699 |
+
**kwargs):
|
700 |
+
super(Swin2SR, self).__init__()
|
701 |
+
num_in_ch = in_chans
|
702 |
+
num_out_ch = in_chans
|
703 |
+
num_feat = 64
|
704 |
+
self.img_range = img_range
|
705 |
+
if in_chans == 3:
|
706 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
707 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
708 |
+
else:
|
709 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
710 |
+
self.upscale = upscale
|
711 |
+
self.upsampler = upsampler
|
712 |
+
self.window_size = window_size
|
713 |
+
|
714 |
+
#####################################################################################################
|
715 |
+
################################### 1, shallow feature extraction ###################################
|
716 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
717 |
+
|
718 |
+
#####################################################################################################
|
719 |
+
################################### 2, deep feature extraction ######################################
|
720 |
+
self.num_layers = len(depths)
|
721 |
+
self.embed_dim = embed_dim
|
722 |
+
self.ape = ape
|
723 |
+
self.patch_norm = patch_norm
|
724 |
+
self.num_features = embed_dim
|
725 |
+
self.mlp_ratio = mlp_ratio
|
726 |
+
|
727 |
+
# split image into non-overlapping patches
|
728 |
+
self.patch_embed = PatchEmbed(
|
729 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
730 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
731 |
+
num_patches = self.patch_embed.num_patches
|
732 |
+
patches_resolution = self.patch_embed.patches_resolution
|
733 |
+
self.patches_resolution = patches_resolution
|
734 |
+
|
735 |
+
# merge non-overlapping patches into image
|
736 |
+
self.patch_unembed = PatchUnEmbed(
|
737 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
738 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
739 |
+
|
740 |
+
# absolute position embedding
|
741 |
+
if self.ape:
|
742 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
743 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
744 |
+
|
745 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
746 |
+
|
747 |
+
# stochastic depth
|
748 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
749 |
+
|
750 |
+
# build Residual Swin Transformer blocks (RSTB)
|
751 |
+
self.layers = nn.ModuleList()
|
752 |
+
for i_layer in range(self.num_layers):
|
753 |
+
layer = RSTB(dim=embed_dim,
|
754 |
+
input_resolution=(patches_resolution[0],
|
755 |
+
patches_resolution[1]),
|
756 |
+
depth=depths[i_layer],
|
757 |
+
num_heads=num_heads[i_layer],
|
758 |
+
window_size=window_size,
|
759 |
+
mlp_ratio=self.mlp_ratio,
|
760 |
+
qkv_bias=qkv_bias,
|
761 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
762 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
763 |
+
norm_layer=norm_layer,
|
764 |
+
downsample=None,
|
765 |
+
use_checkpoint=use_checkpoint,
|
766 |
+
img_size=img_size,
|
767 |
+
patch_size=patch_size,
|
768 |
+
resi_connection=resi_connection
|
769 |
+
|
770 |
+
)
|
771 |
+
self.layers.append(layer)
|
772 |
+
|
773 |
+
if self.upsampler == 'pixelshuffle_hf':
|
774 |
+
self.layers_hf = nn.ModuleList()
|
775 |
+
for i_layer in range(self.num_layers):
|
776 |
+
layer = RSTB(dim=embed_dim,
|
777 |
+
input_resolution=(patches_resolution[0],
|
778 |
+
patches_resolution[1]),
|
779 |
+
depth=depths[i_layer],
|
780 |
+
num_heads=num_heads[i_layer],
|
781 |
+
window_size=window_size,
|
782 |
+
mlp_ratio=self.mlp_ratio,
|
783 |
+
qkv_bias=qkv_bias,
|
784 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
785 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
786 |
+
norm_layer=norm_layer,
|
787 |
+
downsample=None,
|
788 |
+
use_checkpoint=use_checkpoint,
|
789 |
+
img_size=img_size,
|
790 |
+
patch_size=patch_size,
|
791 |
+
resi_connection=resi_connection
|
792 |
+
|
793 |
+
)
|
794 |
+
self.layers_hf.append(layer)
|
795 |
+
|
796 |
+
self.norm = norm_layer(self.num_features)
|
797 |
+
|
798 |
+
# build the last conv layer in deep feature extraction
|
799 |
+
if resi_connection == '1conv':
|
800 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
801 |
+
elif resi_connection == '3conv':
|
802 |
+
# to save parameters and memory
|
803 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
804 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
805 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
806 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
807 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
808 |
+
|
809 |
+
#####################################################################################################
|
810 |
+
################################ 3, high quality image reconstruction ################################
|
811 |
+
if self.upsampler == 'pixelshuffle':
|
812 |
+
# for classical SR
|
813 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
814 |
+
nn.LeakyReLU(inplace=True))
|
815 |
+
self.upsample = Upsample(upscale, num_feat)
|
816 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
817 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
818 |
+
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
819 |
+
self.conv_before_upsample = nn.Sequential(
|
820 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
821 |
+
nn.LeakyReLU(inplace=True))
|
822 |
+
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
823 |
+
self.conv_after_aux = nn.Sequential(
|
824 |
+
nn.Conv2d(3, num_feat, 3, 1, 1),
|
825 |
+
nn.LeakyReLU(inplace=True))
|
826 |
+
self.upsample = Upsample(upscale, num_feat)
|
827 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
828 |
+
|
829 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
830 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
831 |
+
nn.LeakyReLU(inplace=True))
|
832 |
+
self.upsample = Upsample(upscale, num_feat)
|
833 |
+
self.upsample_hf = Upsample_hf(upscale, num_feat)
|
834 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
835 |
+
self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
|
836 |
+
nn.LeakyReLU(inplace=True))
|
837 |
+
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
838 |
+
self.conv_before_upsample_hf = nn.Sequential(
|
839 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
840 |
+
nn.LeakyReLU(inplace=True))
|
841 |
+
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
842 |
+
|
843 |
+
elif self.upsampler == 'pixelshuffledirect':
|
844 |
+
# for lightweight SR (to save parameters)
|
845 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
846 |
+
(patches_resolution[0], patches_resolution[1]))
|
847 |
+
elif self.upsampler == 'nearest+conv':
|
848 |
+
# for real-world SR (less artifacts)
|
849 |
+
assert self.upscale == 4, 'only support x4 now.'
|
850 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
851 |
+
nn.LeakyReLU(inplace=True))
|
852 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
853 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
854 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
855 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
856 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
857 |
+
else:
|
858 |
+
# for image denoising and JPEG compression artifact reduction
|
859 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
860 |
+
|
861 |
+
self.apply(self._init_weights)
|
862 |
+
|
863 |
+
def _init_weights(self, m):
|
864 |
+
if isinstance(m, nn.Linear):
|
865 |
+
trunc_normal_(m.weight, std=.02)
|
866 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
867 |
+
nn.init.constant_(m.bias, 0)
|
868 |
+
elif isinstance(m, nn.LayerNorm):
|
869 |
+
nn.init.constant_(m.bias, 0)
|
870 |
+
nn.init.constant_(m.weight, 1.0)
|
871 |
+
|
872 |
+
@torch.jit.ignore
|
873 |
+
def no_weight_decay(self):
|
874 |
+
return {'absolute_pos_embed'}
|
875 |
+
|
876 |
+
@torch.jit.ignore
|
877 |
+
def no_weight_decay_keywords(self):
|
878 |
+
return {'relative_position_bias_table'}
|
879 |
+
|
880 |
+
def check_image_size(self, x):
|
881 |
+
_, _, h, w = x.size()
|
882 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
883 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
884 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
885 |
+
return x
|
886 |
+
|
887 |
+
def forward_features(self, x):
|
888 |
+
x_size = (x.shape[2], x.shape[3])
|
889 |
+
x = self.patch_embed(x)
|
890 |
+
if self.ape:
|
891 |
+
x = x + self.absolute_pos_embed
|
892 |
+
x = self.pos_drop(x)
|
893 |
+
|
894 |
+
for layer in self.layers:
|
895 |
+
x = layer(x, x_size)
|
896 |
+
|
897 |
+
x = self.norm(x) # B L C
|
898 |
+
x = self.patch_unembed(x, x_size)
|
899 |
+
|
900 |
+
return x
|
901 |
+
|
902 |
+
def forward_features_hf(self, x):
|
903 |
+
x_size = (x.shape[2], x.shape[3])
|
904 |
+
x = self.patch_embed(x)
|
905 |
+
if self.ape:
|
906 |
+
x = x + self.absolute_pos_embed
|
907 |
+
x = self.pos_drop(x)
|
908 |
+
|
909 |
+
for layer in self.layers_hf:
|
910 |
+
x = layer(x, x_size)
|
911 |
+
|
912 |
+
x = self.norm(x) # B L C
|
913 |
+
x = self.patch_unembed(x, x_size)
|
914 |
+
|
915 |
+
return x
|
916 |
+
|
917 |
+
def forward(self, x):
|
918 |
+
H, W = x.shape[2:]
|
919 |
+
x = self.check_image_size(x)
|
920 |
+
|
921 |
+
self.mean = self.mean.type_as(x)
|
922 |
+
x = (x - self.mean) * self.img_range
|
923 |
+
|
924 |
+
if self.upsampler == 'pixelshuffle':
|
925 |
+
# for classical SR
|
926 |
+
x = self.conv_first(x)
|
927 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
928 |
+
x = self.conv_before_upsample(x)
|
929 |
+
x = self.conv_last(self.upsample(x))
|
930 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
931 |
+
bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
|
932 |
+
bicubic = self.conv_bicubic(bicubic)
|
933 |
+
x = self.conv_first(x)
|
934 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
935 |
+
x = self.conv_before_upsample(x)
|
936 |
+
aux = self.conv_aux(x) # b, 3, LR_H, LR_W
|
937 |
+
x = self.conv_after_aux(aux)
|
938 |
+
x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
|
939 |
+
x = self.conv_last(x)
|
940 |
+
aux = aux / self.img_range + self.mean
|
941 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
942 |
+
# for classical SR with HF
|
943 |
+
x = self.conv_first(x)
|
944 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
945 |
+
x_before = self.conv_before_upsample(x)
|
946 |
+
x_out = self.conv_last(self.upsample(x_before))
|
947 |
+
|
948 |
+
x_hf = self.conv_first_hf(x_before)
|
949 |
+
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
|
950 |
+
x_hf = self.conv_before_upsample_hf(x_hf)
|
951 |
+
x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
|
952 |
+
x = x_out + x_hf
|
953 |
+
x_hf = x_hf / self.img_range + self.mean
|
954 |
+
|
955 |
+
elif self.upsampler == 'pixelshuffledirect':
|
956 |
+
# for lightweight SR
|
957 |
+
x = self.conv_first(x)
|
958 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
959 |
+
x = self.upsample(x)
|
960 |
+
elif self.upsampler == 'nearest+conv':
|
961 |
+
# for real-world SR
|
962 |
+
x = self.conv_first(x)
|
963 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
964 |
+
x = self.conv_before_upsample(x)
|
965 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
966 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
967 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
968 |
+
else:
|
969 |
+
# for image denoising and JPEG compression artifact reduction
|
970 |
+
x_first = self.conv_first(x)
|
971 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
972 |
+
x = x + self.conv_last(res)
|
973 |
+
|
974 |
+
x = x / self.img_range + self.mean
|
975 |
+
if self.upsampler == "pixelshuffle_aux":
|
976 |
+
return x[:, :, :H*self.upscale, :W*self.upscale], aux
|
977 |
+
|
978 |
+
elif self.upsampler == "pixelshuffle_hf":
|
979 |
+
x_out = x_out / self.img_range + self.mean
|
980 |
+
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
|
981 |
+
|
982 |
+
else:
|
983 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
984 |
+
|
985 |
+
def flops(self):
|
986 |
+
flops = 0
|
987 |
+
H, W = self.patches_resolution
|
988 |
+
flops += H * W * 3 * self.embed_dim * 9
|
989 |
+
flops += self.patch_embed.flops()
|
990 |
+
for i, layer in enumerate(self.layers):
|
991 |
+
flops += layer.flops()
|
992 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
993 |
+
flops += self.upsample.flops()
|
994 |
+
return flops
|
995 |
+
|
996 |
+
|
997 |
+
if __name__ == '__main__':
|
998 |
+
upscale = 4
|
999 |
+
window_size = 8
|
1000 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
1001 |
+
width = (720 // upscale // window_size + 1) * window_size
|
1002 |
+
model = Swin2SR(upscale=2, img_size=(height, width),
|
1003 |
+
window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
|
1004 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
1005 |
+
print(model)
|
1006 |
+
print(height, width, model.flops() / 1e9)
|
1007 |
+
|
1008 |
+
x = torch.randn((1, 3, height, width))
|
1009 |
+
x = model(x)
|
1010 |
+
print(x.shape)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timm
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
opencv-python-headless
|
5 |
+
Pillow
|
utils/util_calculate_psnr_ssim.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# https://github.com/JingyunLiang/SwinIR/blob/main/utils/util_calculate_psnr_ssim.py
|
3 |
+
# -----------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
10 |
+
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
|
11 |
+
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
12 |
+
Args:
|
13 |
+
img1 (ndarray): Images with range [0, 255].
|
14 |
+
img2 (ndarray): Images with range [0, 255].
|
15 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
16 |
+
pixels are not involved in the PSNR calculation.
|
17 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
18 |
+
Default: 'HWC'.
|
19 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
20 |
+
Returns:
|
21 |
+
float: psnr result.
|
22 |
+
"""
|
23 |
+
|
24 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
25 |
+
if input_order not in ['HWC', 'CHW']:
|
26 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
27 |
+
img1 = reorder_image(img1, input_order=input_order)
|
28 |
+
img2 = reorder_image(img2, input_order=input_order)
|
29 |
+
img1 = img1.astype(np.float64)
|
30 |
+
img2 = img2.astype(np.float64)
|
31 |
+
|
32 |
+
if crop_border != 0:
|
33 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
34 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
35 |
+
|
36 |
+
if test_y_channel:
|
37 |
+
img1 = to_y_channel(img1)
|
38 |
+
img2 = to_y_channel(img2)
|
39 |
+
|
40 |
+
mse = np.mean((img1 - img2) ** 2)
|
41 |
+
if mse == 0:
|
42 |
+
return float('inf')
|
43 |
+
return 20. * np.log10(255. / np.sqrt(mse))
|
44 |
+
|
45 |
+
|
46 |
+
def _ssim(img1, img2):
|
47 |
+
"""Calculate SSIM (structural similarity) for one channel images.
|
48 |
+
It is called by func:`calculate_ssim`.
|
49 |
+
Args:
|
50 |
+
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
|
51 |
+
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
|
52 |
+
Returns:
|
53 |
+
float: ssim result.
|
54 |
+
"""
|
55 |
+
|
56 |
+
C1 = (0.01 * 255) ** 2
|
57 |
+
C2 = (0.03 * 255) ** 2
|
58 |
+
|
59 |
+
img1 = img1.astype(np.float64)
|
60 |
+
img2 = img2.astype(np.float64)
|
61 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
62 |
+
window = np.outer(kernel, kernel.transpose())
|
63 |
+
|
64 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
65 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
66 |
+
mu1_sq = mu1 ** 2
|
67 |
+
mu2_sq = mu2 ** 2
|
68 |
+
mu1_mu2 = mu1 * mu2
|
69 |
+
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
70 |
+
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
71 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
72 |
+
|
73 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
74 |
+
return ssim_map.mean()
|
75 |
+
|
76 |
+
|
77 |
+
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
78 |
+
"""Calculate SSIM (structural similarity).
|
79 |
+
Ref:
|
80 |
+
Image quality assessment: From error visibility to structural similarity
|
81 |
+
The results are the same as that of the official released MATLAB code in
|
82 |
+
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
|
83 |
+
For three-channel images, SSIM is calculated for each channel and then
|
84 |
+
averaged.
|
85 |
+
Args:
|
86 |
+
img1 (ndarray): Images with range [0, 255].
|
87 |
+
img2 (ndarray): Images with range [0, 255].
|
88 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
89 |
+
pixels are not involved in the SSIM calculation.
|
90 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
91 |
+
Default: 'HWC'.
|
92 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
93 |
+
Returns:
|
94 |
+
float: ssim result.
|
95 |
+
"""
|
96 |
+
|
97 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
98 |
+
if input_order not in ['HWC', 'CHW']:
|
99 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
100 |
+
img1 = reorder_image(img1, input_order=input_order)
|
101 |
+
img2 = reorder_image(img2, input_order=input_order)
|
102 |
+
img1 = img1.astype(np.float64)
|
103 |
+
img2 = img2.astype(np.float64)
|
104 |
+
|
105 |
+
if crop_border != 0:
|
106 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
107 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
108 |
+
|
109 |
+
if test_y_channel:
|
110 |
+
img1 = to_y_channel(img1)
|
111 |
+
img2 = to_y_channel(img2)
|
112 |
+
|
113 |
+
ssims = []
|
114 |
+
for i in range(img1.shape[2]):
|
115 |
+
ssims.append(_ssim(img1[..., i], img2[..., i]))
|
116 |
+
return np.array(ssims).mean()
|
117 |
+
|
118 |
+
|
119 |
+
def _blocking_effect_factor(im):
|
120 |
+
block_size = 8
|
121 |
+
|
122 |
+
block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)
|
123 |
+
block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)
|
124 |
+
|
125 |
+
horizontal_block_difference = (
|
126 |
+
(im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(
|
127 |
+
3).sum(2).sum(1)
|
128 |
+
vertical_block_difference = (
|
129 |
+
(im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(
|
130 |
+
2).sum(1)
|
131 |
+
|
132 |
+
nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)
|
133 |
+
nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)
|
134 |
+
|
135 |
+
horizontal_nonblock_difference = (
|
136 |
+
(im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(
|
137 |
+
3).sum(2).sum(1)
|
138 |
+
vertical_nonblock_difference = (
|
139 |
+
(im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(
|
140 |
+
3).sum(2).sum(1)
|
141 |
+
|
142 |
+
n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)
|
143 |
+
n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)
|
144 |
+
boundary_difference = (horizontal_block_difference + vertical_block_difference) / (
|
145 |
+
n_boundary_horiz + n_boundary_vert)
|
146 |
+
|
147 |
+
n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz
|
148 |
+
n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert
|
149 |
+
nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (
|
150 |
+
n_nonboundary_horiz + n_nonboundary_vert)
|
151 |
+
|
152 |
+
scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))
|
153 |
+
bef = scaler * (boundary_difference - nonboundary_difference)
|
154 |
+
|
155 |
+
bef[boundary_difference <= nonboundary_difference] = 0
|
156 |
+
return bef
|
157 |
+
|
158 |
+
|
159 |
+
def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
160 |
+
"""Calculate PSNR-B (Peak Signal-to-Noise Ratio).
|
161 |
+
Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation
|
162 |
+
# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
163 |
+
Args:
|
164 |
+
img1 (ndarray): Images with range [0, 255].
|
165 |
+
img2 (ndarray): Images with range [0, 255].
|
166 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
167 |
+
pixels are not involved in the PSNR calculation.
|
168 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
169 |
+
Default: 'HWC'.
|
170 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
171 |
+
Returns:
|
172 |
+
float: psnr result.
|
173 |
+
"""
|
174 |
+
|
175 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
176 |
+
if input_order not in ['HWC', 'CHW']:
|
177 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
178 |
+
img1 = reorder_image(img1, input_order=input_order)
|
179 |
+
img2 = reorder_image(img2, input_order=input_order)
|
180 |
+
img1 = img1.astype(np.float64)
|
181 |
+
img2 = img2.astype(np.float64)
|
182 |
+
|
183 |
+
if crop_border != 0:
|
184 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
185 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
186 |
+
|
187 |
+
if test_y_channel:
|
188 |
+
img1 = to_y_channel(img1)
|
189 |
+
img2 = to_y_channel(img2)
|
190 |
+
|
191 |
+
# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
192 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.
|
193 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.
|
194 |
+
|
195 |
+
total = 0
|
196 |
+
for c in range(img1.shape[1]):
|
197 |
+
mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')
|
198 |
+
bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])
|
199 |
+
|
200 |
+
mse = mse.view(mse.shape[0], -1).mean(1)
|
201 |
+
total += 10 * torch.log10(1 / (mse + bef))
|
202 |
+
|
203 |
+
return float(total) / img1.shape[1]
|
204 |
+
|
205 |
+
|
206 |
+
def reorder_image(img, input_order='HWC'):
|
207 |
+
"""Reorder images to 'HWC' order.
|
208 |
+
If the input_order is (h, w), return (h, w, 1);
|
209 |
+
If the input_order is (c, h, w), return (h, w, c);
|
210 |
+
If the input_order is (h, w, c), return as it is.
|
211 |
+
Args:
|
212 |
+
img (ndarray): Input image.
|
213 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
214 |
+
If the input image shape is (h, w), input_order will not have
|
215 |
+
effects. Default: 'HWC'.
|
216 |
+
Returns:
|
217 |
+
ndarray: reordered image.
|
218 |
+
"""
|
219 |
+
|
220 |
+
if input_order not in ['HWC', 'CHW']:
|
221 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
|
222 |
+
if len(img.shape) == 2:
|
223 |
+
img = img[..., None]
|
224 |
+
if input_order == 'CHW':
|
225 |
+
img = img.transpose(1, 2, 0)
|
226 |
+
return img
|
227 |
+
|
228 |
+
|
229 |
+
def to_y_channel(img):
|
230 |
+
"""Change to Y channel of YCbCr.
|
231 |
+
Args:
|
232 |
+
img (ndarray): Images with range [0, 255].
|
233 |
+
Returns:
|
234 |
+
(ndarray): Images with range [0, 255] (float type) without round.
|
235 |
+
"""
|
236 |
+
img = img.astype(np.float32) / 255.
|
237 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
238 |
+
img = bgr2ycbcr(img, y_only=True)
|
239 |
+
img = img[..., None]
|
240 |
+
return img * 255.
|
241 |
+
|
242 |
+
|
243 |
+
def _convert_input_type_range(img):
|
244 |
+
"""Convert the type and range of the input image.
|
245 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
246 |
+
It is mainly used for pre-processing the input image in colorspace
|
247 |
+
convertion functions such as rgb2ycbcr and ycbcr2rgb.
|
248 |
+
Args:
|
249 |
+
img (ndarray): The input image. It accepts:
|
250 |
+
1. np.uint8 type with range [0, 255];
|
251 |
+
2. np.float32 type with range [0, 1].
|
252 |
+
Returns:
|
253 |
+
(ndarray): The converted image with type of np.float32 and range of
|
254 |
+
[0, 1].
|
255 |
+
"""
|
256 |
+
img_type = img.dtype
|
257 |
+
img = img.astype(np.float32)
|
258 |
+
if img_type == np.float32:
|
259 |
+
pass
|
260 |
+
elif img_type == np.uint8:
|
261 |
+
img /= 255.
|
262 |
+
else:
|
263 |
+
raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
|
264 |
+
return img
|
265 |
+
|
266 |
+
|
267 |
+
def _convert_output_type_range(img, dst_type):
|
268 |
+
"""Convert the type and range of the image according to dst_type.
|
269 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
270 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
271 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
272 |
+
range [0, 1].
|
273 |
+
It is mainly used for post-processing images in colorspace convertion
|
274 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
275 |
+
Args:
|
276 |
+
img (ndarray): The image to be converted with np.float32 type and
|
277 |
+
range [0, 255].
|
278 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
279 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
280 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
281 |
+
with range [0, 1].
|
282 |
+
Returns:
|
283 |
+
(ndarray): The converted image with desired type and range.
|
284 |
+
"""
|
285 |
+
if dst_type not in (np.uint8, np.float32):
|
286 |
+
raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
|
287 |
+
if dst_type == np.uint8:
|
288 |
+
img = img.round()
|
289 |
+
else:
|
290 |
+
img /= 255.
|
291 |
+
return img.astype(dst_type)
|
292 |
+
|
293 |
+
|
294 |
+
def bgr2ycbcr(img, y_only=False):
|
295 |
+
"""Convert a BGR image to YCbCr image.
|
296 |
+
The bgr version of rgb2ycbcr.
|
297 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
298 |
+
television. See more details in
|
299 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
300 |
+
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
301 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
302 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
303 |
+
Args:
|
304 |
+
img (ndarray): The input image. It accepts:
|
305 |
+
1. np.uint8 type with range [0, 255];
|
306 |
+
2. np.float32 type with range [0, 1].
|
307 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
308 |
+
Returns:
|
309 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
310 |
+
and range as input image.
|
311 |
+
"""
|
312 |
+
img_type = img.dtype
|
313 |
+
img = _convert_input_type_range(img)
|
314 |
+
if y_only:
|
315 |
+
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
316 |
+
else:
|
317 |
+
out_img = np.matmul(
|
318 |
+
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
319 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
320 |
+
return out_img
|