jiuface's picture
bugfix
672c364
raw
history blame
16.8 kB
from typing import Tuple, Optional
import os
import gradio as gr
import numpy as np
import random
import spaces
import cv2
from diffusers import DiffusionPipeline
from diffusers import FluxInpaintPipeline
import torch
from PIL import Image, ImageFilter
from huggingface_hub import login
from diffusers import AutoencoderTiny, AutoencoderKL
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import boto3
from io import BytesIO
from datetime import datetime
from diffusers.utils import load_image, make_image_grid
import json
from preprocessor import Preprocessor
from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import FluxControlNetInpaintPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
login(token=HF_TOKEN)
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 768
# init
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
control_mode_ids = {
"scribble_hed": 0,
"canny": 0, # supported
"mlsd": 0, # supported
"tile": 1, # supported
"depth_midas": 2, # supported
"blur": 3, # supported
"openpose": 4, # supported
"gray": 5, # supported
"low_quality": 6, # supported
}
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def calculate_image_dimensions_for_flux(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def is_mask_empty(image: Image.Image) -> bool:
gray_img = image.convert("L")
pixels = list(gray_img.getdata())
return all(pixel == 0 for pixel in pixels)
def process_mask(
mask: Image.Image,
mask_inflation: Optional[int] = None,
mask_blur: Optional[int] = None
) -> Image.Image:
"""
Inflates and blurs the white regions of a mask.
Args:
mask (Image.Image): The input mask image.
mask_inflation (Optional[int]): The number of pixels to inflate the mask by.
mask_blur (Optional[int]): The radius of the Gaussian blur to apply.
Returns:
Image.Image: The processed mask with inflated and/or blurred regions.
"""
if mask_inflation and mask_inflation > 0:
mask_array = np.array(mask)
kernel = np.ones((mask_inflation, mask_inflation), np.uint8)
mask_array = cv2.dilate(mask_array, kernel, iterations=1)
mask = Image.fromarray(mask_array)
if mask_blur and mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(radius=mask_blur))
return mask
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
return image_file
def run_flux(
image: Image.Image,
mask: Image.Image,
control_image: Image.Image,
control_mode: int,
prompt: str,
lora_path: str,
lora_weights: str,
lora_scale: float,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
resolution_wh: Tuple[int, int],
progress
) -> Image.Image:
print("Running FLUX...")
if lora_path and lora_weights:
with calculateDuration("load lora"):
print("start to load lora", lora_path, lora_weights)
pipe.unload_lora_weights()
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
width, height = resolution_wh
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
with calculateDuration("run pipe"):
generated_image = pipe(
prompt=prompt,
image=image,
mask_image=mask,
control_image=control_image,
control_mode=control_mode,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider,
max_sequence_length=256,
joint_attention_kwargs={"scale": lora_scale}
).images[0]
return generated_image
@spaces.GPU(duration=120)
def process(
image_url: str,
mask_url: str,
inpainting_prompt_text: str,
mask_inflation_slider: int,
mask_blur_slider: int,
control_mode: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
lora_path: str,
lora_weights: str,
lora_scale: str,
upload_to_r2: bool,
account_id: str,
access_key: str,
secret_key: str,
bucket:str,
progress=gr.Progress(track_tqdm=True)
):
torch.cuda.empty_cache()
result = {"status": "false", "message": ""}
if not image_url:
gr.Info("please enter image url for inpaiting")
result["message"] = "invalid image url"
return None, json.dumps(result)
if not inpainting_prompt_text:
gr.Info("Please enter inpainting text prompt.")
result["message"] = "invalid inpainting prompt"
return None, json.dumps(result)
with calculateDuration("load image"):
image = load_image(image_url)
mask = load_image(mask_url)
if not image or not mask:
gr.Info("Please upload an image & mask by url.")
result["message"] = "can not load image"
return None, json.dumps(result)
# generate
with calculateDuration("resize & process mask"):
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
image = image.resize((width, height), Image.LANCZOS)
mask = mask.resize((width, height), Image.LANCZOS)
mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
# generated control_
with calculateDuration("Preprocessor Image"):
print("start to generate control image")
preprocessor = Preprocessor()
if control_mode == "depth_midas":
preprocessor.load("Midas")
control_image = preprocessor(
image=image,
image_resolution=width,
detect_resolution=512,
)
if control_mode == "openpose":
preprocessor.load("Openpose")
control_image = preprocessor(
image=image,
hand_and_face=True,
image_resolution=width,
detect_resolution=512,
)
if control_mode == "canny":
preprocessor.load("Canny")
control_image = preprocessor(
image=image,
image_resolution=width,
detect_resolution=512,
)
if control_mode == "mlsd":
preprocessor.load("MLSD")
control_image = preprocessor(
image=image_before,
image_resolution=width,
detect_resolution=512,
)
if control_mode == "scribble_hed":
preprocessor.load("HED")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
control_image = control_image.resize((width, height), Image.LANCZOS)
control_mode_id = control_mode_ids[control_mode]
try:
generated_image = run_flux(
image=image,
mask=mask,
control_image=control_image,
control_mode=control_mode_id,
prompt=inpainting_prompt_text,
lora_path=lora_path,
lora_scale=lora_scale,
lora_weights=lora_weights,
seed_slicer=seed_slicer,
randomize_seed_checkbox=randomize_seed_checkbox,
strength_slider=strength_slider,
num_inference_steps_slider=num_inference_steps_slider,
resolution_wh=(width, height),
progress=progress
)
except Exception as e:
result["status"] = "faield"
result["message"] = "generate image failed"
print(e)
generated_image = None
print("run flux finish")
if generated_image:
if upload_to_r2:
with calculateDuration("upload image"):
url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
final_images = []
final_images.append(image)
final_images.append(mask)
final_images.append(control_image)
if generated_image:
final_images.append(generated_image)
return final_images, json.dumps(result)
with gr.Blocks() as demo:
gr.Markdown("Flux inpaint with lora")
with gr.Row():
with gr.Column():
image_url = gr.Text(
label="Orginal image url",
show_label=True,
max_lines=1,
placeholder="Enter image url for inpainting",
container=False
)
mask_url = gr.Text(
label="Mask image url",
show_label=True,
max_lines=1,
placeholder="Enter url of masking",
container=False,
)
inpainting_prompt_text_component = gr.Text(
label="Inpainting prompt",
show_label=True,
max_lines=1,
placeholder="Enter text to generate inpainting",
container=False,
)
control_mode = gr.Dropdown(
[ "canny", "depth_midas", "openpose", "mlsd"], label="Controlnet Model", info="choose controlnet model!", value="openpose"
)
submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)
with gr.Accordion("Lora Settings", open=True):
lora_path = gr.Textbox(
label="Lora model path",
show_label=True,
max_lines=1,
placeholder="Enter your model path",
info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.",
value=""
)
lora_weights = gr.Textbox(
label="Lora weights",
show_label=True,
max_lines=1,
placeholder="Enter your lora weights name",
value=""
)
lora_scale = gr.Slider(
label="Lora scale",
show_label=True,
minimum=0,
maximum=1,
step=0.1,
value=0.9,
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
mask_inflation_slider_component = gr.Slider(
label="Mask inflation",
info="Adjusts the amount of mask edge expansion before "
"inpainting.",
minimum=0,
maximum=20,
step=1,
value=5,
)
mask_blur_slider_component = gr.Slider(
label="Mask blur",
info="Controls the intensity of the Gaussian blur applied to "
"the mask edges.",
minimum=0,
maximum=20,
step=1,
value=5,
)
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Accordion("R2 Settings", open=False):
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
with gr.Row():
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Row():
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
with gr.Column():
generated_images = gr.Gallery(label="Result", show_label=True)
output_json_component = gr.Code(label="JSON Result", language="json")
submit_button_component.click(
fn=process,
inputs=[
image_url,
mask_url,
inpainting_prompt_text_component,
mask_inflation_slider_component,
mask_blur_slider_component,
control_mode,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component,
lora_path,
lora_weights,
lora_scale,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
],
outputs=[
generated_images,
output_json_component
]
)
demo.queue().launch()