Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,915 Bytes
efc40ec a4f92f5 2143c77 efc40ec cc2c622 0611e52 2143c77 efc40ec 0611e52 efc40ec 9fee3bb bece293 0611e52 efc40ec 2143c77 efc40ec 2143c77 b8d7aba 2143c77 efc40ec 2143c77 6ae9ba8 0611e52 5903bf0 0611e52 5903bf0 07a147a efc40ec 0611e52 efc40ec 98795d7 efc40ec 2143c77 efc40ec 98795d7 efc40ec 07a147a efc40ec ae1ab67 efc40ec ae1ab67 efc40ec 0611e52 efc40ec b8d7aba efc40ec f19c22c efc40ec 0611e52 6ae9ba8 0611e52 efc40ec 98795d7 84af0f3 0611e52 84af0f3 0611e52 b8d7aba 84af0f3 0611e52 84af0f3 0c9d568 9fee3bb 7b934fb ae1ab67 0611e52 ae1ab67 0611e52 ae1ab67 b8d7aba 0611e52 b8d7aba 0611e52 efc40ec daf6c0f efc40ec b8d7aba efc40ec ae1ab67 efc40ec f19c22c efc40ec 98795d7 efc40ec f19c22c efc40ec f19c22c 2143c77 efc40ec 98795d7 7b934fb daf6c0f 7b934fb 98795d7 2143c77 efc40ec 98795d7 d87857b 50e596b b8d7aba 98795d7 0611e52 ae1ab67 f19c22c 98795d7 f19c22c 0611e52 f19c22c b8d7aba f19c22c 9fee3bb f19c22c 9fee3bb ae1ab67 84af0f3 d87857b 9fee3bb ae1ab67 9fee3bb 65123f2 9fee3bb 0c9d568 9fee3bb efc40ec b5af976 efc40ec 2143c77 efc40ec 4039bad efc40ec f19c22c efc40ec 2143c77 daf6c0f 4039bad efc40ec daf6c0f efc40ec 2143c77 efc40ec 4039bad ae1ab67 efc40ec 2143c77 5903bf0 b8d7aba ae1ab67 efc40ec 2143c77 efc40ec b5af976 efc40ec b5af976 efc40ec 2143c77 efc40ec 2143c77 efc40ec b8d7aba 65123f2 b8d7aba 65123f2 b8d7aba 65123f2 b8d7aba efc40ec 6ae9ba8 efc40ec 4039bad efc40ec 7b934fb efc40ec 9fee3bb 50e596b efc40ec daf6c0f efc40ec b8d7aba efc40ec ae1ab67 efc40ec 9fee3bb efc40ec c8c2fd4 0611e52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from typing import Tuple, Optional
import os
import gradio as gr
import numpy as np
import random
import spaces
import cv2
from diffusers import DiffusionPipeline
from diffusers import FluxInpaintPipeline
import torch
from PIL import Image, ImageFilter
from huggingface_hub import login
from diffusers import AutoencoderTiny, AutoencoderKL
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import boto3
from io import BytesIO
from datetime import datetime
from diffusers.utils import load_image, make_image_grid
import json
from preprocessor import Preprocessor
from diffusers import FluxControlNetInpaintPipeline
from diffusers.models import FluxControlNetModel
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
# init
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
# pipe.enable_model_cpu_offload() # for saving memory
def clear_cuda_cache():
torch.cuda.empty_cache()
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def calculate_image_dimensions_for_flux(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def process_mask(
mask: Image.Image,
mask_inflation: Optional[int] = None,
mask_blur: Optional[int] = None
) -> Image.Image:
"""
Inflates and blurs the white regions of a mask.
Args:
mask (Image.Image): The input mask image.
mask_inflation (Optional[int]): The number of pixels to inflate the mask by.
mask_blur (Optional[int]): The radius of the Gaussian blur to apply.
Returns:
Image.Image: The processed mask with inflated and/or blurred regions.
"""
if mask_inflation and mask_inflation > 0:
mask_array = np.array(mask)
kernel = np.ones((mask_inflation, mask_inflation), np.uint8)
mask_array = cv2.dilate(mask_array, kernel, iterations=1)
mask = Image.fromarray(mask_array)
if mask_blur and mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(radius=mask_blur))
clear_cuda_cache()
return mask
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
with calculateDuration("Upload image"):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
return image_file
@spaces.GPU(duration=120)
@torch.inference_mode()
def run_flux(
image: Image.Image,
mask: Image.Image,
control_image: Image.Image,
prompt: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
controlnet_conditioning_scale: float,
guidance_scale: float,
resolution_wh: Tuple[int, int],
progress
) -> Image.Image:
print("Running FLUX...")
pipe.to(device)
width, height = resolution_wh
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
with calculateDuration("Run pipe"):
with torch.inference_mode():
generated_image = pipe(
prompt=prompt,
image=image,
mask_image=mask,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
strength=strength_slider,
guidance_scale=guidance_scale,
width=width,
height=height,
generator=generator,
num_inference_steps=num_inference_steps_slider,
).images[0]
progress(99, "Generate image success!")
return generated_image
def load_loras(lora_strings_json:str):
lora_configs = None
if lora_strings_json:
try:
lora_configs = json.loads(lora_strings_json)
except:
print("parse lora failed")
if lora_configs:
with calculateDuration("Loading LoRA weights"):
pipe.unload_lora_weights()
adapter_names = []
adapter_weights = []
for lora_info in lora_configs:
lora_repo = lora_info.get("repo")
weights = lora_info.get("weights")
adapter_name = lora_info.get("adapter_name")
adapter_weight = lora_info.get("adapter_weight")
if lora_repo and weights and adapter_name:
# load lora
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
adapter_names.append(adapter_name)
adapter_weights.append(adapter_weight)
# set lora weights
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
def generate_control_image(image, mask, width, height):
# generated control_
with calculateDuration("Generate control image"):
preprocessor = Preprocessor()
preprocessor.load("Canny")
control_image = preprocessor(
image=image,
image_resolution=width,
detect_resolution=512,
)
control_image = control_image.resize((width, height), Image.LANCZOS)
return control_image
def process(
image_url: str,
mask_url: str,
inpainting_prompt_text: str,
mask_inflation_slider: int,
mask_blur_slider: int,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
guidance_scale: float,
controlnet_conditioning_scale: float,
num_inference_steps_slider: int,
lora_strings_json: str,
upload_to_r2: bool,
account_id: str,
access_key: str,
secret_key: str,
bucket:str,
progress=gr.Progress(track_tqdm=True)
):
print("process", image_url, mask_url, inpainting_prompt_text, lora_strings_json)
result = {"status": "false", "message": ""}
if not image_url:
gr.Info("please enter image url for inpaiting")
result["message"] = "invalid image url"
return None, json.dumps(result)
if not inpainting_prompt_text:
gr.Info("Please enter inpainting text prompt.")
result["message"] = "invalid inpainting prompt"
return None, json.dumps(result)
with calculateDuration("Load image"):
image = load_image(image_url)
mask = load_image(mask_url)
if not image or not mask:
gr.Info("Please upload an image & mask by url.")
result["message"] = "can not load image"
return None, json.dumps(result)
# generate
with calculateDuration("Resize & process mask"):
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
image = image.resize((width, height), Image.LANCZOS)
mask = mask.resize((width, height), Image.LANCZOS)
mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
control_image = generate_control_image(image, mask, width, height)
# clear_cuda_cache()
load_loras(lora_strings_json=lora_strings_json)
try:
print("Start applying for zeroGPU resources ...")
generated_image = run_flux(
image=image,
mask=mask,
control_image=control_image,
prompt=inpainting_prompt_text,
seed_slicer=seed_slicer,
randomize_seed_checkbox=randomize_seed_checkbox,
strength_slider=strength_slider,
num_inference_steps_slider=num_inference_steps_slider,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
resolution_wh=(width, height),
progress=progress
)
except Exception as e:
result["status"] = "faield"
result["message"] = "generate image failed"
print(e)
generated_image = None
clear_cuda_cache()
print("run flux finish")
if generated_image:
if upload_to_r2:
url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
final_images = []
final_images.append(image)
final_images.append(mask)
final_images.append(control_image)
if generated_image:
final_images.append(generated_image)
progress(100, "finish!")
return final_images, json.dumps(result)
with gr.Blocks() as demo:
gr.Markdown("Run inpainting with Flux, compatible with Canny ControlNet, LoRAs and HyperFlux_8step")
with gr.Row():
with gr.Column():
image_url = gr.Text(
label="Orginal image url",
show_label=True,
max_lines=1,
placeholder="Enter image url for inpainting",
container=False
)
mask_url = gr.Text(
label="Mask image url",
show_label=True,
max_lines=1,
placeholder="Enter url of masking",
container=False,
)
inpainting_prompt_text_component = gr.Text(
label="Inpainting prompt",
show_label=True,
max_lines=5,
placeholder="Enter text to generate inpainting",
container=False,
)
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
mask_inflation_slider_component = gr.Slider(
label="Mask inflation",
info="Adjusts the amount of mask edge expansion before "
"inpainting.",
minimum=0,
maximum=20,
step=1,
value=10,
)
mask_blur_slider_component = gr.Slider(
label="Mask blur",
info="Controls the intensity of the Gaussian blur applied to "
"the mask edges.",
minimum=0,
maximum=20,
step=1,
value=10,
)
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="guidance_scale",
info="Guidance scale.",
minimum=0.1,
maximum=10,
step=0.1,
value=3.5,
)
controlnet_conditioning_scale = gr.Slider(
label="controlnet_conditioning_scale",
info="ControlNet strength, depth works best at 0.2, canny works best at 0.4. Recommended range is 0.3-0.8",
minimum=0.1,
maximum=1,
step=0.1,
value=0.4,
)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=8,
)
with gr.Accordion("R2 Settings", open=False):
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
with gr.Row():
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Row():
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
with gr.Column():
generated_images = gr.Gallery(label="Result", show_label=True)
output_json_component = gr.Code(label="JSON Result", language="json")
submit_button_component.click(
fn=process,
inputs=[
image_url,
mask_url,
inpainting_prompt_text_component,
mask_inflation_slider_component,
mask_blur_slider_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
guidance_scale,
controlnet_conditioning_scale,
num_inference_steps_slider_component,
lora_strings_json,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
],
outputs=[
generated_images,
output_json_component
]
)
demo.queue(api_open=False)
demo.launch()
|