jfeng1115's picture
init commit
58d33f0
"""Wrapper around Redis vector database."""
from __future__ import annotations
import json
import logging
import uuid
from typing import Any, Callable, Iterable, List, Mapping, Optional
import numpy as np
from redis.client import Redis as RedisType
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger()
def _check_redis_module_exist(client: RedisType, module: str) -> bool:
return module in [m["name"] for m in client.info().get("modules", {"name": ""})]
class Redis(VectorStore):
def __init__(
self,
redis_url: str,
index_name: str,
embedding_function: Callable,
**kwargs: Any,
):
"""Initialize with necessary components."""
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
self.embedding_function = embedding_function
self.index_name = index_name
try:
redis_client = redis.from_url(redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# check if redis add redisearch module
if not _check_redis_module_exist(redis_client, "search"):
raise ValueError(
"Could not use redis directly, you need to add search module"
"Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa
)
self.client = redis_client
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
# `prefix`: Maybe in the future we can let the user choose the index_name.
prefix = "doc" # prefix for the document keys
ids = []
# Check if index exists
for i, text in enumerate(texts):
key = f"{prefix}:{uuid.uuid4().hex}"
metadata = metadatas[i] if metadatas else {}
self.client.hset(
key,
mapping={
"content": text,
"content_vector": np.array(
self.embedding_function(text), dtype=np.float32
).tobytes(),
"metadata": json.dumps(metadata),
},
)
ids.append(key)
return ids
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
try:
from redis.commands.search.query import Query
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Creates embedding vector from user query
embedding = self.embedding_function(query)
# Prepare the Query
return_fields = ["metadata", "content", "vector_score"]
vector_field = "content_vector"
hybrid_fields = "*"
base_query = (
f"{hybrid_fields}=>[KNN {k} @{vector_field} $vector AS vector_score]"
)
redis_query = (
Query(base_query)
.return_fields(*return_fields)
.sort_by("vector_score")
.paging(0, k)
.dialect(2)
)
params_dict: Mapping[str, str] = {
"vector": np.array(embedding) # type: ignore
.astype(dtype=np.float32)
.tobytes()
}
# perform vector search
results = self.client.ft(self.index_name).search(redis_query, params_dict)
documents = [
Document(page_content=result.content, metadata=json.loads(result.metadata))
for result in results.docs
]
return documents
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
**kwargs: Any,
) -> Redis:
"""Construct RediSearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the RediSearch instance.
3. Adds the documents to the newly created RediSearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import RediSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
kwargs.pop("redis_url")
client = redis.from_url(url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# check if redis add redisearch module
if not _check_redis_module_exist(client, "search"):
raise ValueError(
"Could not use redis directly, you need to add search module"
"Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa
)
embeddings = embedding.embed_documents(texts)
dim = len(embeddings[0])
# Constants
vector_number = len(embeddings) # initial number of vectors
# name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
prefix = f"doc:{index_name}" # prefix for the document keys
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
content = TextField(name="content")
metadata = TextField(name="metadata")
content_embedding = VectorField(
"content_vector",
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
"INITIAL_CAP": vector_number,
},
)
fields = [content, metadata, content_embedding]
# Check if index exists
try:
client.ft(index_name).info()
logger.info("Index already exists")
except: # noqa
# Create Redis Index
client.ft(index_name).create_index(
fields=fields,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
pipeline = client.pipeline()
for i, text in enumerate(texts):
key = f"{prefix}:{i}"
metadata = metadatas[i] if metadatas else {}
pipeline.hset(
key,
mapping={
"content": text,
"content_vector": np.array(
embeddings[i], dtype=np.float32
).tobytes(),
"metadata": json.dumps(metadata),
},
)
pipeline.execute()
return cls(redis_url, index_name, embedding.embed_query)
@staticmethod
def drop_index(
index_name: str,
delete_documents: bool,
**kwargs: Any,
) -> bool:
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
kwargs.pop("redis_url")
client = redis.from_url(url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# Check if index exists
try:
client.ft(index_name).dropindex(delete_documents)
logger.info("Drop index")
return True
except: # noqa
# Index not exist
return False
@classmethod
def from_existing_index(
cls,
embedding: Embeddings,
index_name: str,
**kwargs: Any,
) -> Redis:
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
kwargs.pop("redis_url")
client = redis.from_url(url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# check if redis add redisearch module
if not _check_redis_module_exist(client, "search"):
raise ValueError(
"Could not use redis directly, you need to add search module"
"Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa
)
return cls(redis_url, index_name, embedding.embed_query)