jfeng1115's picture
init commit
58d33f0
# flake8: noqa
"""Tools for interacting with a SQL database."""
from pydantic import BaseModel, Extra, Field, validator
from langchain.chains.llm import LLMChain
from langchain.llms.openai import OpenAI
from langchain.prompts import PromptTemplate
from langchain.sql_database import SQLDatabase
from langchain.tools.base import BaseTool
from langchain.tools.sql_database.prompt import QUERY_CHECKER
class ClarifyTool(BaseTool):
"""Tool for clarifying a query."""
name = "clarify"
description = "Input to this tool is the clarification question" \
"send a message back to the customer to clarify their query"
return_direct = True
def _run(self, clarification: str) -> str:
"""Run the tool."""
return clarification
class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with a SQL database."""
db: SQLDatabase = Field(exclude=True)
# Override BaseTool.Config to appease mypy
# See https://github.com/pydantic/pydantic/issues/4173
class Config(BaseTool.Config):
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
extra = Extra.forbid
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name = "query_sql_db"
description = """
Input to this tool is a detailed and correct SQL query, output is a result from the database.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(self, query: str) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
async def _arun(self, query: str) -> str:
raise NotImplementedError("QuerySqlDbTool does not support async")
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting metadata about a SQL database."""
name = "schema_sql_db"
description = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_sql_db first!
Example Input: "table1, table2, table3"
"""
def _run(self, table_names: str) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
async def _arun(self, table_name: str) -> str:
raise NotImplementedError("SchemaSqlDbTool does not support async")
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting tables names."""
name = "list_tables_sql_db"
description = "Input is an empty string, output is a comma separated list of tables in the database."
def _run(self, tool_input: str = "") -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_table_names())
async def _arun(self, tool_input: str = "") -> str:
raise NotImplementedError("ListTablesSqlDbTool does not support async")
class QueryCheckerTool(BaseSQLDatabaseTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm_chain: LLMChain = Field(
default_factory=lambda: LLMChain(
llm=OpenAI(temperature=0),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
),
)
)
name = "query_checker_sql_db"
description = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@validator("llm_chain")
def validate_llm_chain_input_variables(cls, llm_chain: LLMChain) -> LLMChain:
"""Make sure the LLM chain has the correct input variables."""
if llm_chain.prompt.input_variables != ["query", "dialect"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return llm_chain
def _run(self, query: str) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(query=query, dialect=self.db.dialect)
async def _arun(self, query: str) -> str:
return await self.llm_chain.apredict(query=query, dialect=self.db.dialect)