Spaces:
Runtime error
Runtime error
# flake8: noqa | |
"""Tools for interacting with a SQL database.""" | |
from pydantic import BaseModel, Extra, Field, validator | |
from langchain.chains.llm import LLMChain | |
from langchain.llms.openai import OpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.sql_database import SQLDatabase | |
from langchain.tools.base import BaseTool | |
from langchain.tools.sql_database.prompt import QUERY_CHECKER | |
class ClarifyTool(BaseTool): | |
"""Tool for clarifying a query.""" | |
name = "clarify" | |
description = "Input to this tool is the clarification question" \ | |
"send a message back to the customer to clarify their query" | |
return_direct = True | |
def _run(self, clarification: str) -> str: | |
"""Run the tool.""" | |
return clarification | |
class BaseSQLDatabaseTool(BaseModel): | |
"""Base tool for interacting with a SQL database.""" | |
db: SQLDatabase = Field(exclude=True) | |
# Override BaseTool.Config to appease mypy | |
# See https://github.com/pydantic/pydantic/issues/4173 | |
class Config(BaseTool.Config): | |
"""Configuration for this pydantic object.""" | |
arbitrary_types_allowed = True | |
extra = Extra.forbid | |
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool): | |
"""Tool for querying a SQL database.""" | |
name = "query_sql_db" | |
description = """ | |
Input to this tool is a detailed and correct SQL query, output is a result from the database. | |
If the query is not correct, an error message will be returned. | |
If an error is returned, rewrite the query, check the query, and try again. | |
""" | |
def _run(self, query: str) -> str: | |
"""Execute the query, return the results or an error message.""" | |
return self.db.run_no_throw(query) | |
async def _arun(self, query: str) -> str: | |
raise NotImplementedError("QuerySqlDbTool does not support async") | |
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool): | |
"""Tool for getting metadata about a SQL database.""" | |
name = "schema_sql_db" | |
description = """ | |
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. | |
Be sure that the tables actually exist by calling list_tables_sql_db first! | |
Example Input: "table1, table2, table3" | |
""" | |
def _run(self, table_names: str) -> str: | |
"""Get the schema for tables in a comma-separated list.""" | |
return self.db.get_table_info_no_throw(table_names.split(", ")) | |
async def _arun(self, table_name: str) -> str: | |
raise NotImplementedError("SchemaSqlDbTool does not support async") | |
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool): | |
"""Tool for getting tables names.""" | |
name = "list_tables_sql_db" | |
description = "Input is an empty string, output is a comma separated list of tables in the database." | |
def _run(self, tool_input: str = "") -> str: | |
"""Get the schema for a specific table.""" | |
return ", ".join(self.db.get_table_names()) | |
async def _arun(self, tool_input: str = "") -> str: | |
raise NotImplementedError("ListTablesSqlDbTool does not support async") | |
class QueryCheckerTool(BaseSQLDatabaseTool, BaseTool): | |
"""Use an LLM to check if a query is correct. | |
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/""" | |
template: str = QUERY_CHECKER | |
llm_chain: LLMChain = Field( | |
default_factory=lambda: LLMChain( | |
llm=OpenAI(temperature=0), | |
prompt=PromptTemplate( | |
template=QUERY_CHECKER, input_variables=["query", "dialect"] | |
), | |
) | |
) | |
name = "query_checker_sql_db" | |
description = """ | |
Use this tool to double check if your query is correct before executing it. | |
Always use this tool before executing a query with query_sql_db! | |
""" | |
def validate_llm_chain_input_variables(cls, llm_chain: LLMChain) -> LLMChain: | |
"""Make sure the LLM chain has the correct input variables.""" | |
if llm_chain.prompt.input_variables != ["query", "dialect"]: | |
raise ValueError( | |
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']" | |
) | |
return llm_chain | |
def _run(self, query: str) -> str: | |
"""Use the LLM to check the query.""" | |
return self.llm_chain.predict(query=query, dialect=self.db.dialect) | |
async def _arun(self, query: str) -> str: | |
return await self.llm_chain.apredict(query=query, dialect=self.db.dialect) | |