Spaces:
Runtime error
Runtime error
"""Wrapper around Writer APIs.""" | |
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from pydantic import BaseModel, Extra, root_validator | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
class Writer(LLM, BaseModel): | |
"""Wrapper around Writer large language models. | |
To use, you should have the environment variable ``WRITER_API_KEY`` | |
set with your API key. | |
Example: | |
.. code-block:: python | |
from langchain import Writer | |
writer = Writer(model_id="palmyra-base") | |
""" | |
model_id: str = "palmyra-base" | |
"""Model name to use.""" | |
tokens_to_generate: int = 24 | |
"""Max number of tokens to generate.""" | |
logprobs: bool = False | |
"""Whether to return log probabilities.""" | |
temperature: float = 1.0 | |
"""What sampling temperature to use.""" | |
length: int = 256 | |
"""The maximum number of tokens to generate in the completion.""" | |
top_p: float = 1.0 | |
"""Total probability mass of tokens to consider at each step.""" | |
top_k: int = 1 | |
"""The number of highest probability vocabulary tokens to | |
keep for top-k-filtering.""" | |
repetition_penalty: float = 1.0 | |
"""Penalizes repeated tokens according to frequency.""" | |
random_seed: int = 0 | |
"""The model generates random results. | |
Changing the random seed alone will produce a different response | |
with similar characteristics. It is possible to reproduce results | |
by fixing the random seed (assuming all other hyperparameters | |
are also fixed)""" | |
beam_search_diversity_rate: float = 1.0 | |
"""Only applies to beam search, i.e. when the beam width is >1. | |
A higher value encourages beam search to return a more diverse | |
set of candidates""" | |
beam_width: Optional[int] = None | |
"""The number of concurrent candidates to keep track of during | |
beam search""" | |
length_pentaly: float = 1.0 | |
"""Only applies to beam search, i.e. when the beam width is >1. | |
Larger values penalize long candidates more heavily, thus preferring | |
shorter candidates""" | |
writer_api_key: Optional[str] = None | |
stop: Optional[List[str]] = None | |
"""Sequences when completion generation will stop""" | |
base_url: Optional[str] = None | |
"""Base url to use, if None decides based on model name.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key exists in environment.""" | |
writer_api_key = get_from_dict_or_env( | |
values, "writer_api_key", "WRITER_API_KEY" | |
) | |
values["writer_api_key"] = writer_api_key | |
return values | |
def _default_params(self) -> Mapping[str, Any]: | |
"""Get the default parameters for calling Writer API.""" | |
return { | |
"tokens_to_generate": self.tokens_to_generate, | |
"stop": self.stop, | |
"logprobs": self.logprobs, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"repetition_penalty": self.repetition_penalty, | |
"random_seed": self.random_seed, | |
"beam_search_diversity_rate": self.beam_search_diversity_rate, | |
"beam_width": self.beam_width, | |
"length_pentaly": self.length_pentaly, | |
} | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"model_id": self.model_id}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "writer" | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Call out to Writer's complete endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = Writer("Tell me a joke.") | |
""" | |
if self.base_url is not None: | |
base_url = self.base_url | |
else: | |
base_url = ( | |
"https://api.llm.writer.com/v1/models/{self.model_id}/completions" | |
) | |
response = requests.post( | |
url=base_url, | |
headers={ | |
"Authorization": f"Bearer {self.writer_api_key}", | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
}, | |
json={"prompt": prompt, **self._default_params}, | |
) | |
text = response.text | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the model parameters | |
text = enforce_stop_tokens(text, stop) | |
return text | |