Spaces:
Runtime error
Runtime error
"""Wrapper around StochasticAI APIs.""" | |
import logging | |
import time | |
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from pydantic import BaseModel, Extra, Field, root_validator | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
class StochasticAI(LLM, BaseModel): | |
"""Wrapper around StochasticAI large language models. | |
To use, you should have the environment variable ``STOCHASTICAI_API_KEY`` | |
set with your API key. | |
Example: | |
.. code-block:: python | |
from langchain.llms import StochasticAI | |
stochasticai = StochasticAI(api_url="") | |
""" | |
api_url: str = "" | |
"""Model name to use.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not | |
explicitly specified.""" | |
stochasticai_api_key: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = {field.alias for field in cls.__fields__.values()} | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name not in all_required_field_names: | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
logger.warning( | |
f"""{field_name} was transfered to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key exists in environment.""" | |
stochasticai_api_key = get_from_dict_or_env( | |
values, "stochasticai_api_key", "STOCHASTICAI_API_KEY" | |
) | |
values["stochasticai_api_key"] = stochasticai_api_key | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
**{"endpoint_url": self.api_url}, | |
**{"model_kwargs": self.model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "stochasticai" | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Call out to StochasticAI's complete endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = StochasticAI("Tell me a joke.") | |
""" | |
params = self.model_kwargs or {} | |
response_post = requests.post( | |
url=self.api_url, | |
json={"prompt": prompt, "params": params}, | |
headers={ | |
"apiKey": f"{self.stochasticai_api_key}", | |
"Accept": "application/json", | |
"Content-Type": "application/json", | |
}, | |
) | |
response_post.raise_for_status() | |
response_post_json = response_post.json() | |
completed = False | |
while not completed: | |
response_get = requests.get( | |
url=response_post_json["data"]["responseUrl"], | |
headers={ | |
"apiKey": f"{self.stochasticai_api_key}", | |
"Accept": "application/json", | |
"Content-Type": "application/json", | |
}, | |
) | |
response_get.raise_for_status() | |
response_get_json = response_get.json()["data"] | |
text = response_get_json.get("completion") | |
completed = text is not None | |
time.sleep(0.5) | |
text = text[0] | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the model parameters | |
text = enforce_stop_tokens(text, stop) | |
return text | |