Spaces:
Runtime error
Runtime error
"""Wrapper around HuggingFace APIs.""" | |
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from pydantic import BaseModel, Extra, root_validator | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
VALID_TASKS = ("text2text-generation", "text-generation") | |
class HuggingFaceEndpoint(LLM, BaseModel): | |
"""Wrapper around HuggingFaceHub Inference Endpoints. | |
To use, you should have the ``huggingface_hub`` python package installed, and the | |
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass | |
it as a named parameter to the constructor. | |
Only supports `text-generation` and `text2text-generation` for now. | |
Example: | |
.. code-block:: python | |
from langchain.llms import HuggingFaceEndpoint | |
endpoint_url = ( | |
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud" | |
) | |
hf = HuggingFaceEndpoint( | |
endpoint_url=endpoint_url, | |
huggingfacehub_api_token="my-api-key" | |
) | |
""" | |
endpoint_url: str = "" | |
"""Endpoint URL to use.""" | |
task: Optional[str] = None | |
"""Task to call the model with. Should be a task that returns `generated_text`.""" | |
model_kwargs: Optional[dict] = None | |
"""Key word arguments to pass to the model.""" | |
huggingfacehub_api_token: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
huggingfacehub_api_token = get_from_dict_or_env( | |
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" | |
) | |
try: | |
from huggingface_hub.hf_api import HfApi | |
try: | |
HfApi( | |
endpoint="https://huggingface.co", # Can be a Private Hub endpoint. | |
token=huggingfacehub_api_token, | |
).whoami() | |
except Exception as e: | |
raise ValueError( | |
"Could not authenticate with huggingface_hub. " | |
"Please check your API token." | |
) from e | |
except ImportError: | |
raise ValueError( | |
"Could not import huggingface_hub python package. " | |
"Please it install it with `pip install huggingface_hub`." | |
) | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
_model_kwargs = self.model_kwargs or {} | |
return { | |
**{"endpoint_url": self.endpoint_url, "task": self.task}, | |
**{"model_kwargs": _model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "huggingface_endpoint" | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Call out to HuggingFace Hub's inference endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = hf("Tell me a joke.") | |
""" | |
_model_kwargs = self.model_kwargs or {} | |
# payload samples | |
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs} | |
# HTTP headers for authorization | |
headers = { | |
"Authorization": f"Bearer {self.huggingfacehub_api_token}", | |
"Content-Type": "application/json", | |
} | |
# send request | |
try: | |
response = requests.post( | |
self.endpoint_url, headers=headers, json=parameter_payload | |
) | |
except requests.exceptions.RequestException as e: # This is the correct syntax | |
raise ValueError(f"Error raised by inference endpoint: {e}") | |
generated_text = response.json() | |
if "error" in generated_text: | |
raise ValueError( | |
f"Error raised by inference API: {generated_text['error']}" | |
) | |
if self.task == "text-generation": | |
# Text generation return includes the starter text. | |
text = generated_text[0]["generated_text"][len(prompt) :] | |
elif self.task == "text2text-generation": | |
text = generated_text[0]["generated_text"] | |
else: | |
raise ValueError( | |
f"Got invalid task {self.task}, " | |
f"currently only {VALID_TASKS} are supported" | |
) | |
if stop is not None: | |
# This is a bit hacky, but I can't figure out a better way to enforce | |
# stop tokens when making calls to huggingface_hub. | |
text = enforce_stop_tokens(text, stop) | |
return text | |