jfeng1115's picture
init commit
58d33f0
"""Wrapper around CerebriumAI API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class CerebriumAI(LLM, BaseModel):
"""Wrapper around CerebriumAI large language models.
To use, you should have the ``cerebrium`` python package installed, and the
environment variable ``CEREBRIUMAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import CerebriumAI
cerebrium = CerebriumAI(endpoint_url="")
"""
endpoint_url: str = ""
"""model endpoint to use"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not
explicitly specified."""
cerebriumai_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cerebriumai_api_key = get_from_dict_or_env(
values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY"
)
values["cerebriumai_api_key"] = cerebriumai_api_key
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "cerebriumai"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call to CerebriumAI endpoint."""
try:
from cerebrium import model_api_request
except ImportError:
raise ValueError(
"Could not import cerebrium python package. "
"Please install it with `pip install cerebrium`."
)
params = self.model_kwargs or {}
response = model_api_request(
self.endpoint_url, {"prompt": prompt, **params}, self.cerebriumai_api_key
)
text = response["data"]["result"]
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text