jfeng1115's picture
init commit
58d33f0
"""Load summarizing chains."""
from typing import Any, Mapping, Optional, Protocol
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.summarize import map_reduce_prompt, refine_prompts, stuff_prompt
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
class LoadingCallable(Protocol):
"""Interface for loading the combine documents chain."""
def __call__(
self, llm: BaseLanguageModel, **kwargs: Any
) -> BaseCombineDocumentsChain:
"""Callable to load the combine documents chain."""
def _load_stuff_chain(
llm: BaseLanguageModel,
prompt: BasePromptTemplate = stuff_prompt.PROMPT,
document_variable_name: str = "text",
verbose: Optional[bool] = None,
**kwargs: Any,
) -> StuffDocumentsChain:
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)
# TODO: document prompt
return StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name=document_variable_name,
verbose=verbose,
**kwargs,
)
def _load_map_reduce_chain(
llm: BaseLanguageModel,
map_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_document_variable_name: str = "text",
map_reduce_document_variable_name: str = "text",
collapse_prompt: Optional[BasePromptTemplate] = None,
reduce_llm: Optional[BaseLanguageModel] = None,
collapse_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
**kwargs: Any,
) -> MapReduceDocumentsChain:
map_chain = LLMChain(llm=llm, prompt=map_prompt, verbose=verbose)
_reduce_llm = reduce_llm or llm
reduce_chain = LLMChain(llm=_reduce_llm, prompt=combine_prompt, verbose=verbose)
# TODO: document prompt
combine_document_chain = StuffDocumentsChain(
llm_chain=reduce_chain,
document_variable_name=combine_document_variable_name,
verbose=verbose,
)
if collapse_prompt is None:
collapse_chain = None
if collapse_llm is not None:
raise ValueError(
"collapse_llm provided, but collapse_prompt was not: please "
"provide one or stop providing collapse_llm."
)
else:
_collapse_llm = collapse_llm or llm
collapse_chain = StuffDocumentsChain(
llm_chain=LLMChain(
llm=_collapse_llm,
prompt=collapse_prompt,
verbose=verbose,
),
document_variable_name=combine_document_variable_name,
)
return MapReduceDocumentsChain(
llm_chain=map_chain,
combine_document_chain=combine_document_chain,
document_variable_name=map_reduce_document_variable_name,
collapse_document_chain=collapse_chain,
verbose=verbose,
**kwargs,
)
def _load_refine_chain(
llm: BaseLanguageModel,
question_prompt: BasePromptTemplate = refine_prompts.PROMPT,
refine_prompt: BasePromptTemplate = refine_prompts.REFINE_PROMPT,
document_variable_name: str = "text",
initial_response_name: str = "existing_answer",
refine_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
**kwargs: Any,
) -> RefineDocumentsChain:
initial_chain = LLMChain(llm=llm, prompt=question_prompt, verbose=verbose)
_refine_llm = refine_llm or llm
refine_chain = LLMChain(llm=_refine_llm, prompt=refine_prompt, verbose=verbose)
return RefineDocumentsChain(
initial_llm_chain=initial_chain,
refine_llm_chain=refine_chain,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
verbose=verbose,
**kwargs,
)
def load_summarize_chain(
llm: BaseLanguageModel,
chain_type: str = "stuff",
verbose: Optional[bool] = None,
**kwargs: Any,
) -> BaseCombineDocumentsChain:
"""Load summarizing chain.
Args:
llm: Language Model to use in the chain.
chain_type: Type of document combining chain to use. Should be one of "stuff",
"map_reduce", and "refine".
verbose: Whether chains should be run in verbose mode or not. Note that this
applies to all chains that make up the final chain.
Returns:
A chain to use for summarizing.
"""
loader_mapping: Mapping[str, LoadingCallable] = {
"stuff": _load_stuff_chain,
"map_reduce": _load_map_reduce_chain,
"refine": _load_refine_chain,
}
if chain_type not in loader_mapping:
raise ValueError(
f"Got unsupported chain type: {chain_type}. "
f"Should be one of {loader_mapping.keys()}"
)
return loader_mapping[chain_type](llm, verbose=verbose, **kwargs)