jfeng1115's picture
init commit
58d33f0
"""Chain that interprets a prompt and executes python code to do math."""
from typing import Dict, List
from pydantic import BaseModel, Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
from langchain.python import PythonREPL
class LLMMathChain(Chain, BaseModel):
"""Chain that interprets a prompt and executes python code to do math.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain(llm=OpenAI())
"""
llm: BaseLLM
"""LLM wrapper to use."""
prompt: BasePromptTemplate = PROMPT
"""Prompt to use to translate to python if neccessary."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _process_llm_result(self, t: str) -> Dict[str, str]:
python_executor = PythonREPL()
self.callback_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
if t.startswith("```python"):
code = t[9:-4]
output = python_executor.run(code)
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif t.startswith("Answer:"):
answer = t
elif "Answer:" in t:
answer = "Answer: " + t.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {t}")
return {self.output_key: answer}
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = llm_executor.predict(question=inputs[self.input_key], stop=["```output"])
return self._process_llm_result(t)
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = await llm_executor.apredict(
question=inputs[self.input_key], stop=["```output"]
)
return self._process_llm_result(t)
@property
def _chain_type(self) -> str:
return "llm_math_chain"