Spaces:
Runtime error
Runtime error
"""Chain that just formats a prompt and calls an LLM.""" | |
from __future__ import annotations | |
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union | |
from pydantic import BaseModel, Extra | |
from langchain.chains.base import Chain | |
from langchain.input import get_colored_text | |
from langchain.prompts.base import BasePromptTemplate | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.schema import BaseLanguageModel, LLMResult, PromptValue | |
class LLMChain(Chain, BaseModel): | |
"""Chain to run queries against LLMs. | |
Example: | |
.. code-block:: python | |
from langchain import LLMChain, OpenAI, PromptTemplate | |
prompt_template = "Tell me a {adjective} joke" | |
prompt = PromptTemplate( | |
input_variables=["adjective"], template=prompt_template | |
) | |
llm = LLMChain(llm=OpenAI(), prompt=prompt) | |
""" | |
prompt: BasePromptTemplate | |
"""Prompt object to use.""" | |
llm: BaseLanguageModel | |
output_key: str = "text" #: :meta private: | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
arbitrary_types_allowed = True | |
def input_keys(self) -> List[str]: | |
"""Will be whatever keys the prompt expects. | |
:meta private: | |
""" | |
return self.prompt.input_variables | |
def output_keys(self) -> List[str]: | |
"""Will always return text key. | |
:meta private: | |
""" | |
return [self.output_key] | |
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |
return self.apply([inputs])[0] | |
def generate(self, input_list: List[Dict[str, Any]]) -> LLMResult: | |
"""Generate LLM result from inputs.""" | |
prompts, stop = self.prep_prompts(input_list) | |
return self.llm.generate_prompt(prompts, stop) | |
async def agenerate(self, input_list: List[Dict[str, Any]]) -> LLMResult: | |
"""Generate LLM result from inputs.""" | |
prompts, stop = await self.aprep_prompts(input_list) | |
return await self.llm.agenerate_prompt(prompts, stop) | |
def prep_prompts( | |
self, input_list: List[Dict[str, Any]] | |
) -> Tuple[List[PromptValue], Optional[List[str]]]: | |
"""Prepare prompts from inputs.""" | |
stop = None | |
if "stop" in input_list[0]: | |
stop = input_list[0]["stop"] | |
prompts = [] | |
for inputs in input_list: | |
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} | |
prompt = self.prompt.format_prompt(**selected_inputs) | |
_colored_text = get_colored_text(prompt.to_string(), "green") | |
_text = "Prompt after formatting:\n" + _colored_text | |
self.callback_manager.on_text(_text, end="\n", verbose=self.verbose) | |
if "stop" in inputs and inputs["stop"] != stop: | |
raise ValueError( | |
"If `stop` is present in any inputs, should be present in all." | |
) | |
prompts.append(prompt) | |
return prompts, stop | |
async def aprep_prompts( | |
self, input_list: List[Dict[str, Any]] | |
) -> Tuple[List[PromptValue], Optional[List[str]]]: | |
"""Prepare prompts from inputs.""" | |
stop = None | |
if "stop" in input_list[0]: | |
stop = input_list[0]["stop"] | |
prompts = [] | |
for inputs in input_list: | |
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} | |
prompt = self.prompt.format_prompt(**selected_inputs) | |
_colored_text = get_colored_text(prompt.to_string(), "green") | |
_text = "Prompt after formatting:\n" + _colored_text | |
if self.callback_manager.is_async: | |
await self.callback_manager.on_text( | |
_text, end="\n", verbose=self.verbose | |
) | |
else: | |
self.callback_manager.on_text(_text, end="\n", verbose=self.verbose) | |
if "stop" in inputs and inputs["stop"] != stop: | |
raise ValueError( | |
"If `stop` is present in any inputs, should be present in all." | |
) | |
prompts.append(prompt) | |
return prompts, stop | |
def apply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]: | |
"""Utilize the LLM generate method for speed gains.""" | |
response = self.generate(input_list) | |
return self.create_outputs(response) | |
async def aapply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]: | |
"""Utilize the LLM generate method for speed gains.""" | |
response = await self.agenerate(input_list) | |
return self.create_outputs(response) | |
def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]: | |
"""Create outputs from response.""" | |
return [ | |
# Get the text of the top generated string. | |
{self.output_key: generation[0].text} | |
for generation in response.generations | |
] | |
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |
return (await self.aapply([inputs]))[0] | |
def predict(self, **kwargs: Any) -> str: | |
"""Format prompt with kwargs and pass to LLM. | |
Args: | |
**kwargs: Keys to pass to prompt template. | |
Returns: | |
Completion from LLM. | |
Example: | |
.. code-block:: python | |
completion = llm.predict(adjective="funny") | |
""" | |
return self(kwargs)[self.output_key] | |
async def apredict(self, **kwargs: Any) -> str: | |
"""Format prompt with kwargs and pass to LLM. | |
Args: | |
**kwargs: Keys to pass to prompt template. | |
Returns: | |
Completion from LLM. | |
Example: | |
.. code-block:: python | |
completion = llm.predict(adjective="funny") | |
""" | |
return (await self.acall(kwargs))[self.output_key] | |
def predict_and_parse(self, **kwargs: Any) -> Union[str, List[str], Dict[str, str]]: | |
"""Call predict and then parse the results.""" | |
result = self.predict(**kwargs) | |
if self.prompt.output_parser is not None: | |
return self.prompt.output_parser.parse(result) | |
else: | |
return result | |
def apply_and_parse( | |
self, input_list: List[Dict[str, Any]] | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
"""Call apply and then parse the results.""" | |
result = self.apply(input_list) | |
return self._parse_result(result) | |
def _parse_result( | |
self, result: List[Dict[str, str]] | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
if self.prompt.output_parser is not None: | |
return [ | |
self.prompt.output_parser.parse(res[self.output_key]) for res in result | |
] | |
else: | |
return result | |
async def aapply_and_parse( | |
self, input_list: List[Dict[str, Any]] | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
"""Call apply and then parse the results.""" | |
result = await self.aapply(input_list) | |
return self._parse_result(result) | |
def _chain_type(self) -> str: | |
return "llm_chain" | |
def from_string(cls, llm: BaseLanguageModel, template: str) -> Chain: | |
"""Create LLMChain from LLM and template.""" | |
prompt_template = PromptTemplate.from_template(template) | |
return cls(llm=llm, prompt=prompt_template) | |