jfeng1115's picture
init commit
58d33f0
"""Chain that combines documents by stuffing into context."""
from typing import Any, Dict, List, Optional, Tuple
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
def _get_default_document_prompt() -> PromptTemplate:
return PromptTemplate(input_variables=["page_content"], template="{page_content}")
class StuffDocumentsChain(BaseCombineDocumentsChain, BaseModel):
"""Chain that combines documents by stuffing into context."""
llm_chain: LLMChain
"""LLM wrapper to use after formatting documents."""
document_prompt: BasePromptTemplate = Field(
default_factory=_get_default_document_prompt
)
"""Prompt to use to format each document."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
if "document_variable_name" not in values:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain_variables"
)
else:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict:
# Get relevant information from each document.
doc_dicts = []
for doc in docs:
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
document_info = {
k: base_info[k] for k in self.document_prompt.input_variables
}
doc_dicts.append(document_info)
# Format each document according to the prompt
doc_strings = [self.document_prompt.format(**doc) for doc in doc_dicts]
# Join the documents together to put them in the prompt.
inputs = {
k: v
for k, v in kwargs.items()
if k in self.llm_chain.prompt.input_variables
}
inputs[self.document_variable_name] = "\n\n".join(doc_strings)
return inputs
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Get the prompt length by formatting the prompt."""
inputs = self._get_inputs(docs, **kwargs)
prompt = self.llm_chain.prompt.format(**inputs)
return self.llm_chain.llm.get_num_tokens(prompt)
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
"""Stuff all documents into one prompt and pass to LLM."""
inputs = self._get_inputs(docs, **kwargs)
# Call predict on the LLM.
return self.llm_chain.predict(**inputs), {}
async def acombine_docs(
self, docs: List[Document], **kwargs: Any
) -> Tuple[str, dict]:
"""Stuff all documents into one prompt and pass to LLM."""
inputs = self._get_inputs(docs, **kwargs)
# Call predict on the LLM.
return await self.llm_chain.apredict(**inputs), {}
@property
def _chain_type(self) -> str:
return "stuff_documents_chain"