jfeng1115's picture
init commit
58d33f0
"""Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf."""
from __future__ import annotations
import re
from typing import Any, Callable, List, NamedTuple, Optional, Sequence, Tuple
from langchain.agents.agent import Agent, AgentExecutor
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.llms.base import BaseLLM
from langchain.prompts import PromptTemplate
from langchain.tools.base import BaseTool
FINAL_ANSWER_ACTION = "Final Answer:"
class ChainConfig(NamedTuple):
"""Configuration for chain to use in MRKL system.
Args:
action_name: Name of the action.
action: Action function to call.
action_description: Description of the action.
"""
action_name: str
action: Callable
action_description: str
def get_action_and_input(llm_output: str) -> Tuple[str, str]:
"""Parse out the action and input from the LLM output.
Note: if you're specifying a custom prompt for the ZeroShotAgent,
you will need to ensure that it meets the following Regex requirements.
The string starting with "Action:" and the following string starting
with "Action Input:" should be separated by a newline.
"""
if FINAL_ANSWER_ACTION in llm_output:
return "Final Answer", llm_output.split(FINAL_ANSWER_ACTION)[-1].strip()
regex = r"Action: (.*?)[\n]*Action Input: (.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
return action, action_input.strip(" ").strip('"')
class ZeroShotAgent(Agent):
"""Agent for the MRKL chain."""
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return "zero-shot-react-description"
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
for tool in tools:
if tool.description is None:
raise ValueError(
f"Got a tool {tool.name} without a description. For this agent, "
f"a description must always be provided."
)
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
return get_action_and_input(text)
class MRKLChain(AgentExecutor):
"""Chain that implements the MRKL system.
Example:
.. code-block:: python
from langchain import OpenAI, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = PromptTemplate(...)
chains = [...]
mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt)
"""
@classmethod
def from_chains(
cls, llm: BaseLLM, chains: List[ChainConfig], **kwargs: Any
) -> AgentExecutor:
"""User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Args:
llm: The LLM to use as the agent LLM.
chains: The chains the MRKL system has access to.
**kwargs: parameters to be passed to initialization.
Returns:
An initialized MRKL chain.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains)
"""
tools = [
Tool(
name=c.action_name,
func=c.action,
description=c.action_description,
)
for c in chains
]
agent = ZeroShotAgent.from_llm_and_tools(llm, tools)
return cls(agent=agent, tools=tools, **kwargs)