Spaces:
Runtime error
Runtime error
File size: 10,681 Bytes
58d33f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""Base interface that all chains should implement."""
import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import yaml
from pydantic import BaseModel, Field, validator
import langchain
from langchain.callbacks import get_callback_manager
from langchain.callbacks.base import BaseCallbackManager
from langchain.schema import BaseMemory
def _get_verbosity() -> bool:
return langchain.verbose
class Chain(BaseModel, ABC):
"""Base interface that all chains should implement."""
memory: Optional[BaseMemory] = None
callback_manager: BaseCallbackManager = Field(
default_factory=get_callback_manager, exclude=True
)
verbose: bool = Field(
default_factory=_get_verbosity
) # Whether to print the response text
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@property
def _chain_type(self) -> str:
raise NotImplementedError("Saving not supported for this chain type.")
@validator("callback_manager", pre=True, always=True)
def set_callback_manager(
cls, callback_manager: Optional[BaseCallbackManager]
) -> BaseCallbackManager:
"""If callback manager is None, set it.
This allows users to pass in None as callback manager, which is a nice UX.
"""
return callback_manager or get_callback_manager()
@validator("verbose", pre=True, always=True)
def set_verbose(cls, verbose: Optional[bool]) -> bool:
"""If verbose is None, set it.
This allows users to pass in None as verbose to access the global setting.
"""
if verbose is None:
return _get_verbosity()
else:
return verbose
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Input keys this chain expects."""
@property
@abstractmethod
def output_keys(self) -> List[str]:
"""Output keys this chain expects."""
def _validate_inputs(self, inputs: Dict[str, str]) -> None:
"""Check that all inputs are present."""
missing_keys = set(self.input_keys).difference(inputs)
if missing_keys:
raise ValueError(f"Missing some input keys: {missing_keys}")
def _validate_outputs(self, outputs: Dict[str, str]) -> None:
if set(outputs) != set(self.output_keys):
raise ValueError(
f"Did not get output keys that were expected. "
f"Got: {set(outputs)}. Expected: {set(self.output_keys)}."
)
@abstractmethod
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
"""Run the logic of this chain and return the output."""
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
"""Run the logic of this chain and return the output."""
raise NotImplementedError("Async call not supported for this chain type.")
def __call__(
self, inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False
) -> Dict[str, Any]:
"""Run the logic of this chain and add to output if desired.
Args:
inputs: Dictionary of inputs, or single input if chain expects
only one param.
return_only_outputs: boolean for whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
"""
inputs = self.prep_inputs(inputs)
self.callback_manager.on_chain_start(
{"name": self.__class__.__name__},
inputs,
verbose=self.verbose,
)
try:
outputs = self._call(inputs)
except (KeyboardInterrupt, Exception) as e:
self.callback_manager.on_chain_error(e, verbose=self.verbose)
raise e
self.callback_manager.on_chain_end(outputs, verbose=self.verbose)
return self.prep_outputs(inputs, outputs, return_only_outputs)
async def acall(
self, inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False
) -> Dict[str, Any]:
"""Run the logic of this chain and add to output if desired.
Args:
inputs: Dictionary of inputs, or single input if chain expects
only one param.
return_only_outputs: boolean for whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
"""
inputs = self.prep_inputs(inputs)
if self.callback_manager.is_async:
await self.callback_manager.on_chain_start(
{"name": self.__class__.__name__},
inputs,
verbose=self.verbose,
)
else:
self.callback_manager.on_chain_start(
{"name": self.__class__.__name__},
inputs,
verbose=self.verbose,
)
try:
outputs = await self._acall(inputs)
except (KeyboardInterrupt, Exception) as e:
if self.callback_manager.is_async:
await self.callback_manager.on_chain_error(e, verbose=self.verbose)
else:
self.callback_manager.on_chain_error(e, verbose=self.verbose)
raise e
if self.callback_manager.is_async:
await self.callback_manager.on_chain_end(outputs, verbose=self.verbose)
else:
self.callback_manager.on_chain_end(outputs, verbose=self.verbose)
return self.prep_outputs(inputs, outputs, return_only_outputs)
def prep_outputs(
self,
inputs: Dict[str, str],
outputs: Dict[str, str],
return_only_outputs: bool = False,
) -> Dict[str, str]:
"""Validate and prep outputs."""
self._validate_outputs(outputs)
if self.memory is not None:
self.memory.save_context(inputs, outputs)
if return_only_outputs:
return outputs
else:
return {**inputs, **outputs}
def prep_inputs(self, inputs: Union[Dict[str, Any], Any]) -> Dict[str, str]:
"""Validate and prep inputs."""
if not isinstance(inputs, dict):
_input_keys = set(self.input_keys)
if self.memory is not None:
# If there are multiple input keys, but some get set by memory so that
# only one is not set, we can still figure out which key it is.
_input_keys = _input_keys.difference(self.memory.memory_variables)
if len(_input_keys) != 1:
raise ValueError(
f"A single string input was passed in, but this chain expects "
f"multiple inputs ({_input_keys}). When a chain expects "
f"multiple inputs, please call it by passing in a dictionary, "
"eg `chain({'foo': 1, 'bar': 2})`"
)
inputs = {list(_input_keys)[0]: inputs}
if self.memory is not None:
external_context = self.memory.load_memory_variables(inputs)
inputs = dict(inputs, **external_context)
self._validate_inputs(inputs)
return inputs
def apply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]:
"""Call the chain on all inputs in the list."""
return [self(inputs) for inputs in input_list]
def run(self, *args: str, **kwargs: str) -> str:
"""Run the chain as text in, text out or multiple variables, text out."""
if len(self.output_keys) != 1:
raise ValueError(
f"`run` not supported when there is not exactly "
f"one output key. Got {self.output_keys}."
)
if args and not kwargs:
if len(args) != 1:
raise ValueError("`run` supports only one positional argument.")
return self(args[0])[self.output_keys[0]]
if kwargs and not args:
return self(kwargs)[self.output_keys[0]]
raise ValueError(
f"`run` supported with either positional arguments or keyword arguments"
f" but not both. Got args: {args} and kwargs: {kwargs}."
)
async def arun(self, *args: str, **kwargs: str) -> str:
"""Run the chain as text in, text out or multiple variables, text out."""
if len(self.output_keys) != 1:
raise ValueError(
f"`run` not supported when there is not exactly "
f"one output key. Got {self.output_keys}."
)
if args and not kwargs:
if len(args) != 1:
raise ValueError("`run` supports only one positional argument.")
return (await self.acall(args[0]))[self.output_keys[0]]
if kwargs and not args:
return (await self.acall(kwargs))[self.output_keys[0]]
raise ValueError(
f"`run` supported with either positional arguments or keyword arguments"
f" but not both. Got args: {args} and kwargs: {kwargs}."
)
def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of chain."""
if self.memory is not None:
raise ValueError("Saving of memory is not yet supported.")
_dict = super().dict()
_dict["_type"] = self._chain_type
return _dict
def save(self, file_path: Union[Path, str]) -> None:
"""Save the chain.
Args:
file_path: Path to file to save the chain to.
Example:
.. code-block:: python
chain.save(file_path="path/chain.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
chain_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(chain_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(chain_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
|