jervinjosh68 commited on
Commit
2794d4e
·
1 Parent(s): 5d386b6

added app.py and others

Browse files
Files changed (4) hide show
  1. app.py +52 -0
  2. model.py +35 -0
  3. requirements.txt +5 -0
  4. test_img.jpg +0 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from model import AQC_NET
2
+ import torch
3
+ import torch.nn as nn
4
+ import torchvision.transforms as T
5
+ from PIL import Image
6
+ import numpy as np
7
+ import gradio as gr
8
+ model = AQC_NET(pretrain=True,num_label=5)
9
+ def predict(image_name):
10
+ model.eval()
11
+
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ model.to(device)
15
+ inputs = preprocess(image_name)
16
+ inputs = inputs.to(device)
17
+ with torch.no_grad():
18
+ outputs = model(inputs.unsqueeze(0))
19
+ values, indices = torch.topk(outputs, k=5)
20
+ print(values,indices)
21
+ return {i.item(): v.item() for i, v in zip(indices[0], values.detach()[0])}
22
+ def preprocess(image_name):
23
+ transforms = T.Compose([
24
+ T.Resize((256,256)),
25
+ T.ToTensor(),
26
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
27
+ ])
28
+ image = transforms(image_name)
29
+ return image
30
+
31
+ def run_gradio():
32
+
33
+ title = "AQC_NET PH"
34
+ description = "trial AQC_NET"
35
+ examples = ["test_image.jpg","test_img.jpg"]
36
+ inputs = [
37
+ gr.inputs.Image(type="pil", label="Input Image")
38
+ ]
39
+
40
+
41
+ gr.Interface(
42
+ predict,
43
+ inputs,
44
+ outputs = 'label',
45
+ title=title,
46
+ description=description,
47
+ examples=examples,
48
+ theme="huggingface",
49
+ ).launch(debug=True, enable_queue=True)
50
+
51
+ #print(predict("test_image.jpg"))
52
+ run_gradio()
model.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch import Tensor as tensor
4
+ from torch.nn import functional as F
5
+ import torchvision.models as models
6
+
7
+ class SCA_Block(nn.Module):
8
+ def __init__(self, in_channel, downsample_channel):
9
+ super().__init__()
10
+ self.conv_A = nn.Conv2d(in_channel, downsample_channel, (1,1))
11
+ self.conv_B = nn.Conv2d(in_channel, downsample_channel, (1,1))
12
+ self.conv_E = nn.Conv2d(in_channel, downsample_channel, (1,1))
13
+ self.linear = nn.Linear(downsample_channel,in_channel)
14
+ def forward(self, feature_in):
15
+ b_size,c,w,h = feature_in.shape
16
+ A = self.conv_A(feature_in)
17
+ B = self.conv_B(feature_in)
18
+ E = self.conv_E(feature_in)
19
+ c1 = A.shape[1]
20
+ Z = F.softmax(torch.dot(torch.reshape(A,(b_size,c1,-1)),
21
+ torch.reshape(B,(b_size,-1,c1))), axis = 1 )
22
+ D = torch.reshape( Z * torch.reshape(E,(b_size,c1,-1)) , (b_size,c1,w,h))
23
+ out = feature_in * F.sigmoid(F.adaptive_avg_pool2d(D))
24
+ return out
25
+
26
+
27
+ class AQC_NET(nn.Module):
28
+ def __init__(self, pretrain = True, num_label = 5):
29
+ super().__init__()
30
+ self.resnet18 = models.resnet18(pretrained = pretrain)
31
+ self.resnet18.layer3[0].add_module('sca_1', SCA_Block(256,16))
32
+ self.resnet18.layer3[1].add_module('sca_2', SCA_Block(256,16))
33
+ self.resnet18.fc = nn.Linear(512,num_label)
34
+ def forward(self,x):
35
+ return F.softmax(self.resnet18(x))
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ pillow
4
+ numpy
5
+ gradio
test_img.jpg ADDED