Spaces:
Runtime error
Runtime error
File size: 13,322 Bytes
a02c788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from transformers import (
AutoTokenizer,
AutoModel,
AutoConfig,
TFAutoModelForSequenceClassification,
)
from tensorflow import keras
from sklearn.model_selection import train_test_split
import logging
import time
from .models import Models, ModelsByFamily # noqa: F401
from .split_strategies import ( # noqa: F401
SplitStrategy,
SplitStrategies,
RegexExpressions
)
from .aggregation_strategies import ( # noqa: F401
AggregationStrategy,
AggregationStrategies
)
from .helper import (
get_features,
softmax,
remove_dir,
make_dir,
copy_dir
)
AUTOSAVE_PATH = './ernie-autosave/'
def clean_autosave():
remove_dir(AUTOSAVE_PATH)
class SentenceClassifier:
def __init__(self,
model_name=Models.BertBaseUncased,
model_path=None,
max_length=64,
labels_no=2,
tokenizer_kwargs=None,
model_kwargs=None):
self._loaded_data = False
self._model_path = None
if model_kwargs is None:
model_kwargs = {}
model_kwargs['num_labels'] = labels_no
if tokenizer_kwargs is None:
tokenizer_kwargs = {}
tokenizer_kwargs['max_len'] = max_length
if model_path is not None:
self._load_local_model(model_path)
else:
self._load_remote_model(model_name, tokenizer_kwargs, model_kwargs)
@property
def model(self):
return self._model
@property
def tokenizer(self):
return self._tokenizer
def load_dataset(self,
dataframe=None,
validation_split=0.1,
random_state=None,
stratify=None,
csv_path=None,
read_csv_kwargs=None):
if dataframe is None and csv_path is None:
raise ValueError
if csv_path is not None:
dataframe = pd.read_csv(csv_path, **read_csv_kwargs)
sentences = list(dataframe[dataframe.columns[0]])
labels = dataframe[dataframe.columns[1]].values
(
training_sentences,
validation_sentences,
training_labels,
validation_labels
) = train_test_split(
sentences,
labels,
test_size=validation_split,
shuffle=True,
random_state=random_state,
stratify=stratify
)
self._training_features = get_features(
self._tokenizer, training_sentences, training_labels)
self._training_size = len(training_sentences)
self._validation_features = get_features(
self._tokenizer,
validation_sentences,
validation_labels
)
self._validation_split = len(validation_sentences)
logging.info(f'training_size: {self._training_size}')
logging.info(f'validation_split: {self._validation_split}')
self._loaded_data = True
def fine_tune(self,
epochs=4,
learning_rate=2e-5,
epsilon=1e-8,
clipnorm=1.0,
optimizer_function=keras.optimizers.Adam,
optimizer_kwargs=None,
loss_function=keras.losses.SparseCategoricalCrossentropy,
loss_kwargs=None,
accuracy_function=keras.metrics.SparseCategoricalAccuracy,
accuracy_kwargs=None,
training_batch_size=32,
validation_batch_size=64,
**kwargs):
if not self._loaded_data:
raise Exception('Data has not been loaded.')
if optimizer_kwargs is None:
optimizer_kwargs = {
'learning_rate': learning_rate,
'epsilon': epsilon,
'clipnorm': clipnorm
}
optimizer = optimizer_function(**optimizer_kwargs)
if loss_kwargs is None:
loss_kwargs = {'from_logits': True}
loss = loss_function(**loss_kwargs)
if accuracy_kwargs is None:
accuracy_kwargs = {'name': 'accuracy'}
accuracy = accuracy_function(**accuracy_kwargs)
self._model.compile(optimizer=optimizer, loss=loss, metrics=[accuracy])
training_features = self._training_features.shuffle(
self._training_size).batch(training_batch_size).repeat(-1)
validation_features = self._validation_features.batch(
validation_batch_size)
training_steps = self._training_size // training_batch_size
if training_steps == 0:
training_steps = self._training_size
logging.info(f'training_steps: {training_steps}')
validation_steps = self._validation_split // validation_batch_size
if validation_steps == 0:
validation_steps = self._validation_split
logging.info(f'validation_steps: {validation_steps}')
for i in range(epochs):
self._model.fit(training_features,
epochs=1,
validation_data=validation_features,
steps_per_epoch=training_steps,
validation_steps=validation_steps,
**kwargs)
# The fine-tuned model does not have the same input interface
# after being exported and loaded again.
self._reload_model()
def predict_one(
self,
text,
split_strategy=None,
aggregation_strategy=None
):
return next(
self.predict([text],
batch_size=1,
split_strategy=split_strategy,
aggregation_strategy=aggregation_strategy))
def predict(
self,
texts,
batch_size=32,
split_strategy=None,
aggregation_strategy=None
):
if split_strategy is None:
yield from self._predict_batch(texts, batch_size)
else:
if aggregation_strategy is None:
aggregation_strategy = AggregationStrategies.Mean
split_indexes = [0]
sentences = []
for text in texts:
new_sentences = split_strategy.split(text, self.tokenizer)
if not new_sentences:
continue
split_indexes.append(split_indexes[-1] + len(new_sentences))
sentences.extend(new_sentences)
predictions = list(self._predict_batch(sentences, batch_size))
for i, split_index in enumerate(split_indexes[:-1]):
stop_index = split_indexes[i + 1]
yield aggregation_strategy.aggregate(
predictions[split_index:stop_index]
)
def dump(self, path):
if self._model_path:
copy_dir(self._model_path, path)
else:
self._dump(path)
def _dump(self, path):
make_dir(path)
make_dir(path + '/tokenizer')
self._model.save_pretrained(path)
self._tokenizer.save_pretrained(path + '/tokenizer')
self._config.save_pretrained(path + '/tokenizer')
def _predict_batch(self, sentences: list, batch_size: int):
sentences_number = len(sentences)
if batch_size > sentences_number:
batch_size = sentences_number
for i in range(0, sentences_number, batch_size):
input_ids_list = []
attention_mask_list = []
stop_index = i + batch_size
stop_index = stop_index if stop_index < sentences_number \
else sentences_number
for j in range(i, stop_index):
features = self._tokenizer.encode_plus(
sentences[j],
add_special_tokens=True,
max_length=self._tokenizer.model_max_length
)
input_ids, _, attention_mask = (
features['input_ids'],
features['token_type_ids'],
features['attention_mask']
)
input_ids = self._list_to_padded_array(features['input_ids'])
attention_mask = self._list_to_padded_array(
features['attention_mask'])
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
input_dict = {
'input_ids': np.array(input_ids_list),
'attention_mask': np.array(attention_mask_list)
}
logit_predictions = self._model.predict_on_batch(input_dict)
yield from (
[softmax(logit_prediction)
for logit_prediction in logit_predictions[0]]
)
def _list_to_padded_array(self, items):
array = np.array(items)
padded_array = np.zeros(self._tokenizer.model_max_length, dtype=np.int)
padded_array[:array.shape[0]] = array
return padded_array
def _get_temporary_path(self, name=''):
return f'{AUTOSAVE_PATH}{name}/{int(round(time.time() * 1000))}'
def _reload_model(self):
self._model_path = self._get_temporary_path(
name=self._get_model_family())
self._dump(self._model_path)
self._load_local_model(self._model_path)
def _load_local_model(self, model_path):
try:
self._tokenizer = AutoTokenizer.from_pretrained(
model_path + '/tokenizer')
self._config = AutoConfig.from_pretrained(
model_path + '/tokenizer')
# Old models didn't use to have a tokenizer folder
except OSError:
self._tokenizer = AutoTokenizer.from_pretrained(model_path)
self._config = AutoConfig.from_pretrained(model_path)
self._model = TFAutoModelForSequenceClassification.from_pretrained(
model_path,
from_pt=False
)
def _get_model_family(self):
model_family = ''.join(self._model.name[2:].split('_')[:2])
return model_family
def _load_remote_model(self, model_name, tokenizer_kwargs, model_kwargs):
do_lower_case = False
if 'uncased' in model_name.lower():
do_lower_case = True
tokenizer_kwargs.update({'do_lower_case': do_lower_case})
self._tokenizer = AutoTokenizer.from_pretrained(
model_name, **tokenizer_kwargs)
self._config = AutoConfig.from_pretrained(model_name)
temporary_path = self._get_temporary_path()
make_dir(temporary_path)
# TensorFlow model
try:
self._model = TFAutoModelForSequenceClassification.from_pretrained(
model_name,
from_pt=False
)
# PyTorch model
except TypeError:
try:
self._model = \
TFAutoModelForSequenceClassification.from_pretrained(
model_name,
from_pt=True
)
# Loading a TF model from a PyTorch checkpoint is not supported
# when using a model identifier name
except OSError:
model = AutoModel.from_pretrained(model_name)
model.save_pretrained(temporary_path)
self._model = \
TFAutoModelForSequenceClassification.from_pretrained(
temporary_path,
from_pt=True
)
# Clean the model's last layer if the provided properties are different
clean_last_layer = False
for key, value in model_kwargs.items():
if not hasattr(self._model.config, key):
clean_last_layer = True
break
if getattr(self._model.config, key) != value:
clean_last_layer = True
break
if clean_last_layer:
try:
getattr(self._model, self._get_model_family()
).save_pretrained(temporary_path)
self._model = self._model.__class__.from_pretrained(
temporary_path,
from_pt=False,
**model_kwargs
)
# The model is itself the main layer
except AttributeError:
# TensorFlow model
try:
self._model = self._model.__class__.from_pretrained(
model_name,
from_pt=False,
**model_kwargs
)
# PyTorch Model
except (OSError, TypeError):
model = AutoModel.from_pretrained(model_name)
model.save_pretrained(temporary_path)
self._model = self._model.__class__.from_pretrained(
temporary_path,
from_pt=True,
**model_kwargs
)
remove_dir(temporary_path)
assert self._tokenizer and self._model
|