jeanflop commited on
Commit
80e5699
·
verified ·
1 Parent(s): ac3764a
Files changed (1) hide show
  1. app.py +73 -61
app.py CHANGED
@@ -1,34 +1,22 @@
1
  import os
2
- import mediapy as media
3
- import random
4
- import sys
5
  import streamlit as st
6
- import torch
7
- import matplotlib.pyplot as plt
8
- from rembg import remove
9
- from dotenv import load_dotenv
10
-
11
- from typing import List
12
  from langchain.output_parsers import PydanticOutputParser
13
  from langchain_core.prompts import PromptTemplate
14
  from langchain_core.pydantic_v1 import BaseModel, Field, validator
15
- from getpass import getpass
16
- from langchain_community.llms import HuggingFaceEndpoint
17
- from langchain.chains import LLMChain
18
- from diffusers import DiffusionPipeline, TCDScheduler
19
- from huggingface_hub import hf_hub_download
20
- from PIL import Image
21
-
22
- # set hf inference endpoint with lama for story
23
- # get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
24
 
25
- # Load environment variables from .env file
26
- load_dotenv()
27
 
28
- HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
29
  GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
30
  API_KEY = os.environ["API_KEY"]
31
 
 
32
  class Story(BaseModel):
33
  title: str = Field(description="A captivating title for the story.")
34
  characters: list[str] = Field(
@@ -46,60 +34,84 @@ class Story(BaseModel):
46
  Explain the action taking place in each scene. Come up with your own unique descriptions!"""
47
  )
48
 
49
- from langchain_google_genai import ChatGoogleGenerativeAI
50
 
51
- llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=GOOGLE_API_KEY)
52
- model=llm
 
 
 
53
 
54
- system="All instructions must be follow is very important, all story related to african culture and history is mandatory.You are a storyteller who specializes in creating educational tales about African culture. Your mission is to craft a narrative that teaches African children about their rich heritage. Your story is based on real events from the past, incorporating historical references, myths, and legends. story size is short length. Your narrative will be presented in six panels.Very important, For each panel, you will provide: A description of the characters, using precise and unique descriptions each time, ending with the keywords 'high quality', 'watercolor painting', 'painting Benin style', and 'mugshot', 'cartoon africa style' in the scenes or characters is mandatory.For description, using only words or groups of words separated by commas, without sentences. Each sentence in the panel's text should start with the character's name, and each sentence should be no longer than two small sentences. Each story has only three characters. Your story must always revolve around African legends and kingdoms, splitting the scenario into six parts. Be creative in each story"
 
 
 
 
 
 
 
 
55
 
56
- st.title("Storytelling with AI")
57
- # Create input zone
58
- title = st.text_input("Discover a new story on africa, tape a topic !")
 
 
 
 
 
59
 
60
- story_query=system+title
61
- parser = PydanticOutputParser(pydantic_object=Story)
62
 
63
- prompt = PromptTemplate(
64
- template="Answer the user query.\n{format_instructions}\n{query}\n",
65
- input_variables=["query"],
66
- partial_variables={"format_instructions": parser.get_format_instructions()},
67
- )
68
 
69
- chain = prompt | model | parser
70
 
71
- # Trigger the generation of the story only when a title is provided
72
- if title:
73
- response = chain.invoke({"query": story_query})
74
 
75
- # Display the story elements if a response is received
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  if response:
77
  st.write(response)
78
- # Define negative prompt for the image generation
79
- negative_prompt = "ugly, blurry, low-resolution, deformed, mutated, disfigured, missing limbs, disjointed, distorted, deformed, unnatural"
80
- # Function for generating images
81
- def generate_image(scene):
82
- payload = {
83
- "inputs": scene,
84
- "guidance_scale": 0.8,
85
- "num_inference_steps": 8,
86
- "eta": 0.5,
87
- "seed": 46,
88
- "negative_prompt": negative_prompt
89
- }
90
- response = requests.post(API_URL, headers=headers, json=payload)
91
- image_bytes = response.content
92
- image = Image.open(io.BytesIO(image_bytes))
93
- return image
94
-
95
- # Generate and display images with meta-data in a 2x3 grid
96
  st.title("Images générées avec métadonnées dans une grille 2x3")
97
  for i in range(0, len(response.scenes), 2):
98
  col1, col2 = st.columns(2)
99
  col1.write(f"**Scène {i+1}:** {response.metadonne[i]}")
100
- col1.image(generate_image(response.scenes[i]), caption=f"Image de la scène {i+1}", width=300)
 
 
101
 
102
- # Check if a second scene exists for displaying the second image
103
  if i+1 < len(response.scenes):
104
  col2.write(f"**Scène {i+2}:** {response.metadonne[i+1]}")
105
- col2.image(generate_image(response.scenes[i+1]), caption=f"Image de la scène {i+2}", width=300)
 
 
 
 
 
 
1
  import os
 
 
 
2
  import streamlit as st
3
+ import threading
4
+ import asyncio
5
+ import requests
6
+ import io
7
+ from PIL import Image
 
8
  from langchain.output_parsers import PydanticOutputParser
9
  from langchain_core.prompts import PromptTemplate
10
  from langchain_core.pydantic_v1 import BaseModel, Field, validator
11
+ from langchain_google_genai import ChatGoogleGenerativeAI
12
+ from dotenv import load_dotenv
 
 
 
 
 
 
 
13
 
14
+ load_dotenv() # Load environment variables from .env file
 
15
 
 
16
  GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
17
  API_KEY = os.environ["API_KEY"]
18
 
19
+ # Define the Story model for structured output
20
  class Story(BaseModel):
21
  title: str = Field(description="A captivating title for the story.")
22
  characters: list[str] = Field(
 
34
  Explain the action taking place in each scene. Come up with your own unique descriptions!"""
35
  )
36
 
 
37
 
38
+ # Function to generate images using Stable Diffusion XL
39
+ def generate_image(scene, width=300):
40
+ API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
41
+ headers = {"Authorization": f"Bearer {API_KEY}"}
42
+ negative_prompt = "ugly, blurry, low-resolution, deformed, mutated, disfigured, missing limbs, disjointed, distorted, deformed, unnatural"
43
 
44
+ payload = {
45
+ "inputs": scene,
46
+ "guidance_scale": 0.8,
47
+ "num_inference_steps": 8, # Adjust for different image quality/speed
48
+ "eta": 0.5,
49
+ "seed": 46, # Optionally provide a different seed for variety
50
+ "negative_prompt": negative_prompt,
51
+ "width": width # Adjust the width for display
52
+ }
53
 
54
+ response = requests.post(API_URL, headers=headers, json=payload)
55
+ if response.status_code == 200:
56
+ image_bytes = response.content
57
+ image = Image.open(io.BytesIO(image_bytes))
58
+ return image
59
+ else:
60
+ st.error(f"Image generation failed: {response.text}")
61
+ return None
62
 
 
 
63
 
64
+ # Function to run Google GenAI asynchronously
65
+ def run_google_genai_async():
66
+ global response
67
+ llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY)
 
68
 
69
+ system = "All instructions must be follow is very important, all story related to african culture and history is mandatory.You are a storyteller who specializes in creating educational tales about African culture. Your mission is to craft a narrative that teaches African children about their rich heritage. Your story is based on real events from the past, incorporating historical references, myths, and legends. story size is short length. Your narrative will be presented in six panels.Very important, For each panel, you will provide: A description of the characters, using precise and unique descriptions each time, ending with the keywords 'high quality', 'watercolor painting', 'painting Benin style', and 'mugshot', 'cartoon africa style' in the scenes or characters is mandatory.For description, using only words or groups of words separated by commas, without sentences. Each sentence in the panel's text should start with the character's name, and each sentence should be no longer than two small sentences. Each story has only three characters. Your story must always revolve around African legends and kingdoms, splitting the scenario into six parts. Be creative in each story"
70
 
71
+ st.title("Storytelling with AI")
72
+ title = st.text_input("Discover a new story on africa, tape a topic !")
 
73
 
74
+ story_query = system + title
75
+ parser = PydanticOutputParser(pydantic_object=Story)
76
+ prompt = PromptTemplate(
77
+ template="Answer the user query.\n{format_instructions}\n{query}\n",
78
+ input_variables=["query"],
79
+ partial_variables={"format_instructions": parser.get_format_instructions()},
80
+ )
81
+
82
+ chain = prompt | llm | parser
83
+
84
+ if title:
85
+ response = chain.invoke({"query": story_query})
86
+ else:
87
+ response = None # Set response to None if no title is provided
88
+
89
+
90
+ # Main Streamlit function
91
+ def main():
92
+ global response # Declare response as global to access it from run_google_genai_async
93
+ response = None # Initialize response
94
+
95
+ thread = threading.Thread(target=run_google_genai_async)
96
+ thread.start()
97
+
98
+ # Streamlit UI - Display story elements and generated images
99
  if response:
100
  st.write(response)
101
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  st.title("Images générées avec métadonnées dans une grille 2x3")
103
  for i in range(0, len(response.scenes), 2):
104
  col1, col2 = st.columns(2)
105
  col1.write(f"**Scène {i+1}:** {response.metadonne[i]}")
106
+ scene_image = generate_image(response.scenes[i])
107
+ if scene_image:
108
+ col1.image(scene_image, caption=f"Image de la scène {i+1}", width=300)
109
 
 
110
  if i+1 < len(response.scenes):
111
  col2.write(f"**Scène {i+2}:** {response.metadonne[i+1]}")
112
+ scene_image = generate_image(response.scenes[i+1])
113
+ if scene_image:
114
+ col2.image(scene_image, caption=f"Image de la scène {i+2}", width=300)
115
+
116
+ if __name__ == "__main__":
117
+ main()