File size: 13,684 Bytes
57b5ba6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import re
import tempfile
import subprocess
import csv
from collections import OrderedDict
from importlib.resources import files
import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer
from ebooklib import epub, ITEM_DOCUMENT
from bs4 import BeautifulSoup
import nltk
from nltk.tokenize import sent_tokenize
from pydub import AudioSegment
import magic
from mutagen.id3 import ID3, APIC, error
from f5_tts.model import DiT
from f5_tts.infer.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
)
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
DEFAULT_TTS_MODEL = "F5-TTS"
# GPU Decorator
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
return func
# Load models
vocoder = load_vocoder()
def load_f5tts(ckpt_path=None):
if ckpt_path is None:
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
model_cfg = {
"dim": 1024,
"depth": 22,
"heads": 16,
"ff_mult": 2,
"text_dim": 512,
"conv_layers": 4
}
return load_model(DiT, model_cfg, ckpt_path)
F5TTS_ema_model = load_f5tts()
chat_model_state = None
chat_tokenizer_state = None
@gpu_decorator
def generate_response(messages, model, tokenizer):
"""Generate a response using the provided model and tokenizer."""
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
input_features=model_inputs.input_features,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
)
if not generated_ids:
raise ValueError("No generated IDs returned by the model.")
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
if not generated_ids or not generated_ids[0]:
raise ValueError("Generated IDs are empty after processing.")
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
def extract_metadata_and_cover(ebook_path):
"""Extract cover image from the eBook."""
try:
cover_path = os.path.splitext(ebook_path)[0] + '.jpg'
subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
if os.path.exists(cover_path):
return cover_path
except Exception as e:
print(f"Error extracting eBook cover: {e}")
return None
def embed_cover_into_mp3(mp3_path, cover_image_path):
"""Embed a cover image into the MP3 file's metadata."""
try:
audio = ID3(mp3_path)
except error:
audio = ID3()
# Remove existing APIC frames to avoid duplicates
audio.delall("APIC")
try:
with open(cover_image_path, 'rb') as img:
audio.add(APIC(
encoding=3, # 3 is for UTF-8
mime='image/jpeg', # Image MIME type
type=3, # 3 is for front cover
desc='Front cover', # Description
data=img.read()
))
# Save with ID3v2.3 for better compatibility
audio.save(mp3_path, v2_version=3)
print(f"Embedded cover image into {mp3_path}")
except Exception as e:
print(f"Failed to embed cover image into MP3: {e}")
def extract_text_and_title_from_epub(epub_path):
"""Extract text and title from an EPUB file."""
try:
book = epub.read_epub(epub_path)
print(f"EPUB '{epub_path}' successfully read.")
except Exception as e:
raise RuntimeError(f"Failed to read EPUB file: {e}")
text_content = []
title = None
try:
metadata = book.get_metadata('DC', 'title')
if metadata:
title = metadata[0][0]
print(f"Extracted title: {title}")
else:
title = os.path.splitext(os.path.basename(epub_path))[0]
print(f"No title in metadata. Using filename: {title}")
except Exception:
title = os.path.splitext(os.path.basename(epub_path))[0]
print(f"Using filename as title: {title}")
for item in book.get_items():
if item.get_type() == ITEM_DOCUMENT:
try:
soup = BeautifulSoup(item.get_content(), 'html.parser')
text = soup.get_text(separator=' ', strip=True)
if text:
text_content.append(text)
else:
print(f"No text in document item {item.get_id()}.")
except Exception as e:
print(f"Error parsing document item {item.get_id()}: {e}")
full_text = ' '.join(text_content)
if not full_text:
raise ValueError("No text found in EPUB file.")
print(f"Extracted {len(full_text)} characters from EPUB.")
return full_text, title
def convert_to_epub(input_path, output_path):
"""Convert an ebook to EPUB format using Calibre."""
try:
ensure_directory(os.path.dirname(output_path))
subprocess.run(['ebook-convert', input_path, output_path], check=True)
print(f"Converted {input_path} to EPUB.")
return True
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Error converting eBook: {e}")
except Exception as e:
raise RuntimeError(f"Unexpected error during conversion: {e}")
def detect_file_type(file_path):
"""Detect the MIME type of a file."""
try:
mime = magic.Magic(mime=True)
return mime.from_file(file_path)
except Exception as e:
raise RuntimeError(f"Error detecting file type: {e}")
def ensure_directory(directory_path):
"""Ensure that a directory exists."""
try:
os.makedirs(directory_path, exist_ok=True)
except Exception as e:
raise RuntimeError(f"Error creating directory {directory_path}: {e}")
def sanitize_filename(filename):
"""Sanitize a filename by removing invalid characters."""
sanitized = re.sub(r'[\\/*?:"<>|]', "", filename)
return sanitized.replace(" ", "_")
def show_converted_audiobooks():
"""List all converted audiobook files."""
output_dir = os.path.join("Working_files", "Book")
if not os.path.exists(output_dir):
return ["No audiobooks found."]
files = [f for f in os.listdir(output_dir) if f.endswith(('.mp3', '.m4b'))]
if not files:
return ["No audiobooks found."]
return [os.path.join(output_dir, f) for f in files]
@gpu_decorator
def infer(ref_audio_orig, ref_text, gen_text, cross_fade_duration=0.15, speed=1, show_info=gr.Info, progress=gr.Progress()):
"""Perform inference to generate audio from text."""
try:
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
except Exception as e:
raise RuntimeError(f"Error in preprocessing reference audio and text: {e}")
if not gen_text.strip():
raise ValueError("Generated text is empty. Please provide valid text content.")
try:
final_wave, final_sample_rate, _ = infer_process(
ref_audio,
ref_text,
gen_text,
F5TTS_ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
speed=speed,
show_info=show_info,
progress=progress, # Pass progress here
)
except Exception as e:
raise RuntimeError(f"Error during inference process: {e}")
return (final_sample_rate, final_wave), ref_text
@gpu_decorator
def basic_tts(ref_audio_input, ref_text_input, gen_file_input, cross_fade_duration, speed, progress=gr.Progress()):
"""Main function to convert eBooks to audiobooks."""
try:
last_file = None
num_ebooks = len(gen_file_input)
for idx, ebook in enumerate(gen_file_input):
progress(0, desc=f"Processing ebook {idx+1}/{num_ebooks}")
epub_path = ebook
if not os.path.exists(epub_path):
raise FileNotFoundError(f"File not found: {epub_path}")
file_type = detect_file_type(epub_path)
if file_type != 'application/epub+zip':
sanitized_base = sanitize_filename(os.path.splitext(os.path.basename(epub_path))[0])
temp_epub = os.path.join("Working_files", "temp_converted", f"{sanitized_base}.epub")
convert_to_epub(epub_path, temp_epub)
epub_path = temp_epub
progress(0.1, desc="Extracting text and title from EPUB")
gen_text, ebook_title = extract_text_and_title_from_epub(epub_path)
cover_image = extract_metadata_and_cover(epub_path)
ref_text = ref_text_input or ""
progress(0.2, desc="Starting inference")
audio_out, _ = infer(
ref_audio_input,
ref_text,
gen_text,
cross_fade_duration,
speed,
progress=progress, # Pass progress here
)
progress(0.8, desc="Stitching audio files")
sample_rate, wave = audio_out
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
sf.write(tmp_wav.name, wave, sample_rate)
tmp_wav_path = tmp_wav.name
progress(0.9, desc="Converting to MP3")
sanitized_title = sanitize_filename(ebook_title) or f"audiobook_{int(tempfile._get_default_tempdir())}"
tmp_mp3_path = os.path.join("Working_files", "Book", f"{sanitized_title}.mp3")
ensure_directory(os.path.dirname(tmp_mp3_path))
audio = AudioSegment.from_wav(tmp_wav_path)
audio.export(tmp_mp3_path, format="mp3", bitrate="256k")
if cover_image:
embed_cover_into_mp3(tmp_mp3_path, cover_image)
os.remove(tmp_wav_path)
if cover_image and os.path.exists(cover_image):
os.remove(cover_image)
last_file = tmp_mp3_path
progress(1, desc="Completed processing ebook")
audiobooks = show_converted_audiobooks()
return last_file, audiobooks
except Exception as e:
print(f"An error occurred: {e}")
raise e
def create_gradio_app():
"""Create and configure the Gradio application."""
with gr.Blocks(theme=gr.themes.Ocean()) as app:
gr.Markdown("# eBook to Audiobook with F5-TTS!")
ref_audio_input = gr.Audio(
label="Upload Voice File (<15 sec) or Record with Mic Icon (Ensure Natural Phrasing, Trim Silence)",
type="filepath"
)
gen_file_input = gr.Files(
label="Upload eBook or Multiple for Batch Processing (epub, mobi, pdf, txt, html)",
file_types=[".epub", ".mobi", ".pdf", ".txt", ".html"],
type="filepath",
file_count="multiple",
)
generate_btn = gr.Button("Start", variant="primary")
show_audiobooks_btn = gr.Button("Show All Completed Audiobooks", variant="secondary")
audiobooks_output = gr.Files(label="Converted Audiobooks (Download Links ->)")
player = gr.Audio(label="Play Latest Converted Audiobook", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text (Leave Blank for Automatic Transcription)",
lines=2,
)
speed_slider = gr.Slider(
label="Speech Speed (Adjusting Can Cause Artifacts)",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (Between Generated Audio Chunks)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
)
generate_btn.click(
basic_tts,
inputs=[
ref_audio_input,
ref_text_input,
gen_file_input,
cross_fade_duration_slider,
speed_slider,
],
outputs=[player, audiobooks_output],
show_progress=True, # Enable progress bar
)
show_audiobooks_btn.click(
show_converted_audiobooks,
inputs=[],
outputs=[audiobooks_output],
)
return app
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
"""Main entry point to launch the Gradio app."""
app = create_gradio_app()
print("Starting app...")
app.queue().launch(
server_name="0.0.0.0",
server_port=port or 7860,
share=True,
show_api=api,
debug=True
)
if __name__ == "__main__":
import sys
print("Arguments passed to Python:", sys.argv)
if not USING_SPACES:
main()
else:
app = create_gradio_app()
app.queue().launch(debug=True)
|