Spaces:
Running
Running
//load Candle Bert Module wasm module | |
import init, { ModelEncoder } from "./build/m.js"; | |
async function fetchArrayBuffer(url) { | |
const cacheName = "t5-candle-cache"; | |
const cache = await caches.open(cacheName); | |
const cachedResponse = await cache.match(url); | |
if (cachedResponse) { | |
const data = await cachedResponse.arrayBuffer(); | |
return new Uint8Array(data); | |
} | |
const res = await fetch(url, { cache: "force-cache" }); | |
cache.put(url, res.clone()); | |
return new Uint8Array(await res.arrayBuffer()); | |
} | |
class Encoder { | |
static instance = {}; | |
static async getInstance(weightsURL, tokenizerURL, configURL, modelID) { | |
if (!this.instance[modelID]) { | |
await init(); | |
self.postMessage({ status: "loading", message: "Loading Model" }); | |
const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = | |
await Promise.all([ | |
fetchArrayBuffer(weightsURL), | |
fetchArrayBuffer(tokenizerURL), | |
fetchArrayBuffer(configURL), | |
]); | |
this.instance[modelID] = new ModelEncoder( | |
weightsArrayU8, | |
tokenizerArrayU8, | |
configArrayU8 | |
); | |
} else { | |
self.postMessage({ status: "ready", message: "Model Already Loaded" }); | |
} | |
return this.instance[modelID]; | |
} | |
} | |
self.addEventListener("message", async (event) => { | |
const { | |
weightsURL, | |
tokenizerURL, | |
configURL, | |
modelID, | |
sentences, | |
normalize_embeddings, | |
} = event.data; | |
try { | |
self.postMessage({ status: "ready", message: "Starting T5 Encoder" }); | |
const model = await Encoder.getInstance( | |
weightsURL, | |
tokenizerURL, | |
configURL, | |
modelID | |
); | |
self.postMessage({ | |
status: "encoding", | |
message: "Encoding Sentences", | |
}); | |
const output = model.decode({ | |
sentences: sentences, | |
normalize_embeddings: normalize_embeddings || true, | |
}); | |
self.postMessage({ | |
status: "complete", | |
message: "complete", | |
output: output, | |
}); | |
} catch (e) { | |
self.postMessage({ error: e }); | |
} | |
}); | |