|
""" |
|
we introduce a temporal interpolation network to enhance the smoothness of generated videos and synthesize richer temporal details. |
|
This network takes a 16-frame base video as input and produces an upsampled output consisting of 61 frames. |
|
""" |
|
|
|
import os |
|
import sys |
|
import math |
|
try: |
|
import utils |
|
|
|
from diffusion import create_diffusion |
|
from download import find_model |
|
except: |
|
sys.path.append(os.path.split(sys.path[0])[0]) |
|
|
|
import utils |
|
|
|
from diffusion import create_diffusion |
|
from download import find_model |
|
|
|
import torch |
|
import argparse |
|
import torchvision |
|
|
|
from einops import rearrange |
|
from models import get_models |
|
from torchvision.utils import save_image |
|
from diffusers.models import AutoencoderKL |
|
from models.clip import TextEmbedder |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
import numpy as np |
|
from torchvision import transforms |
|
sys.path.append("..") |
|
from datasets import video_transforms |
|
from decord import VideoReader |
|
from utils import mask_generation, mask_generation_before |
|
from natsort import natsorted |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
def get_input(args): |
|
input_path = args.input_path |
|
transform_video = transforms.Compose([ |
|
video_transforms.ToTensorVideo(), |
|
|
|
video_transforms.ResizeVideo((args.image_h, args.image_w)), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) |
|
if input_path is not None: |
|
print(f'loading video from {input_path}') |
|
if os.path.isdir(input_path): |
|
file_list = os.listdir(input_path) |
|
video_frames = [] |
|
for file in file_list: |
|
if file.endswith('jpg') or file.endswith('png'): |
|
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0) |
|
video_frames.append(image) |
|
else: |
|
continue |
|
n = 0 |
|
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) |
|
video_frames = transform_video(video_frames) |
|
return video_frames, n |
|
elif os.path.isfile(input_path): |
|
_, full_file_name = os.path.split(input_path) |
|
file_name, extention = os.path.splitext(full_file_name) |
|
if extention == '.mp4': |
|
video_reader = VideoReader(input_path) |
|
total_frames = len(video_reader) |
|
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames) |
|
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int) |
|
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous() |
|
video_frames = transform_video(video_frames) |
|
n = 3 |
|
del video_reader |
|
return video_frames, n |
|
else: |
|
raise TypeError(f'{extention} is not supported !!') |
|
else: |
|
raise ValueError('Please check your path input!!') |
|
else: |
|
print('given video is None, using text to video') |
|
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8) |
|
args.mask_type = 'all' |
|
video_frames = transform_video(video_frames) |
|
n = 0 |
|
return video_frames, n |
|
|
|
|
|
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): |
|
|
|
|
|
b,f,c,h,w=video_input.shape |
|
latent_h = args.image_size[0] // 8 |
|
latent_w = args.image_size[1] // 8 |
|
|
|
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) |
|
|
|
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() |
|
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) |
|
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() |
|
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) |
|
|
|
|
|
masked_video = torch.cat([masked_video] * 2) if args.do_classifier_free_guidance else masked_video |
|
mask = torch.cat([mask] * 2) if args.do_classifier_free_guidance else mask |
|
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z |
|
|
|
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt] |
|
text_prompt = text_encoder(text_prompts=prompt_all, train=False) |
|
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None) |
|
|
|
if args.use_ddim_sample_loop: |
|
samples = diffusion.ddim_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ |
|
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat |
|
) |
|
else: |
|
samples = diffusion.p_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ |
|
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat |
|
) |
|
samples, _ = samples.chunk(2, dim=0) |
|
|
|
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() |
|
video_clip = vae.decode(video_clip / 0.18215).sample |
|
return video_clip |
|
|
|
|
|
def auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,): |
|
|
|
b,f,c,h,w=video_input.shape |
|
latent_h = args.image_size[0] // 8 |
|
latent_w = args.image_size[1] // 8 |
|
|
|
video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous() |
|
video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215) |
|
video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous() |
|
|
|
lr_indice = torch.IntTensor([i for i in range(0,62,4)]).to(device) |
|
copied_video = torch.index_select(video_input, 2, lr_indice) |
|
copied_video = torch.repeat_interleave(copied_video, 4, dim=2) |
|
copied_video = copied_video[:,:,1:-2,:,:] |
|
copied_video = torch.cat([copied_video] * 2) if args.do_classifier_free_guidance else copied_video |
|
|
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) |
|
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z |
|
|
|
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt] |
|
text_prompt = text_encoder(text_prompts=prompt_all, train=False) |
|
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None) |
|
|
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
if args.use_ddim_sample_loop: |
|
samples = diffusion.ddim_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ |
|
progress=True, device=device, mask=None, x_start=copied_video, use_concat=args.use_concat, copy_no_mask=args.copy_no_mask, |
|
) |
|
else: |
|
raise ValueError(f'We only have ddim sampling implementation for now') |
|
|
|
samples, _ = samples.chunk(2, dim=0) |
|
|
|
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() |
|
video_clip = vae.decode(video_clip / 0.18215).sample |
|
return video_clip |
|
|
|
|
|
|
|
def main(args): |
|
|
|
for seed in args.seed_list: |
|
|
|
args.seed = seed |
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
|
|
|
|
print('sampling begins') |
|
torch.set_grad_enabled(False) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
ckpt_path = args.pretrained_path + "/lavie_interpolation.pt" |
|
sd_path = args.pretrained_path + "/stable-diffusion-v1-4" |
|
for ckpt in [ckpt_path]: |
|
|
|
ckpt_num = str(ckpt_path).zfill(7) |
|
|
|
|
|
latent_h = args.image_size[0] // 8 |
|
latent_w = args.image_size[1] // 8 |
|
args.image_h = args.image_size[0] |
|
args.image_w = args.image_size[1] |
|
args.latent_h = latent_h |
|
args.latent_w = latent_w |
|
print(f'args.copy_no_mask = {args.copy_no_mask}') |
|
model = get_models(args, sd_path).to(device) |
|
|
|
if args.use_compile: |
|
model = torch.compile(model) |
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
print(f'loading model from {ckpt_path}') |
|
|
|
|
|
state_dict = find_model(ckpt_path) |
|
|
|
print(f'state_dict["conv_in.weight"].shape = {state_dict["conv_in.weight"].shape}') |
|
print('loading succeed') |
|
|
|
|
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
|
|
model.eval() |
|
diffusion = create_diffusion(str(args.num_sampling_steps)) |
|
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(device) |
|
text_encoder = TextEmbedder(sd_path).to(device) |
|
|
|
video_list = os.listdir(args.input_folder) |
|
args.input_path_list = [os.path.join(args.input_folder, video) for video in video_list] |
|
for input_path in args.input_path_list: |
|
|
|
args.input_path = input_path |
|
|
|
print(f'=======================================') |
|
if not args.input_path.endswith('.mp4'): |
|
print(f'Skipping {args.input_path}') |
|
continue |
|
|
|
print(f'args.input_path = {args.input_path}') |
|
|
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
|
|
|
|
video_name = args.input_path.split('/')[-1].split('.mp4')[0] |
|
args.prompt = [video_name] |
|
print(f'args.prompt = {args.prompt}') |
|
prompts = args.prompt |
|
class_name = [p + args.additional_prompt for p in prompts] |
|
|
|
if not os.path.exists(os.path.join(args.output_folder)): |
|
os.makedirs(os.path.join(args.output_folder)) |
|
video_input, researve_frames = get_input(args) |
|
video_input = video_input.to(device).unsqueeze(0) |
|
if args.copy_no_mask: |
|
pass |
|
else: |
|
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) |
|
|
|
if args.copy_no_mask: |
|
pass |
|
else: |
|
if args.mask_type == 'tsr': |
|
masked_video = video_input * (mask == 0) |
|
else: |
|
masked_video = video_input * (mask == 0) |
|
|
|
all_video = [] |
|
if researve_frames != 0: |
|
all_video.append(video_input) |
|
for idx, prompt in enumerate(class_name): |
|
if idx == 0: |
|
if args.copy_no_mask: |
|
video_clip = auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,) |
|
video_clip_ = video_clip.unsqueeze(0) |
|
all_video.append(video_clip_) |
|
else: |
|
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) |
|
video_clip_ = video_clip.unsqueeze(0) |
|
all_video.append(video_clip_) |
|
else: |
|
raise NotImplementedError |
|
masked_video = video_input * (mask == 0) |
|
video_clip = auto_inpainting_copy_no_mask(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) |
|
video_clip_ = video_clip.unsqueeze(0) |
|
all_video.append(video_clip_[:, 3:]) |
|
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) |
|
for fps in args.fps_list: |
|
save_path = args.output_folder |
|
if not os.path.exists(os.path.join(save_path)): |
|
os.makedirs(os.path.join(save_path)) |
|
local_save_path = os.path.join(save_path, f'{video_name}.mp4') |
|
print(f'save in {local_save_path}') |
|
torchvision.io.write_video(local_save_path, video_, fps=fps) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config", type=str, required=True) |
|
args = parser.parse_args() |
|
main(**OmegaConf.load(args.config)) |
|
|
|
|
|
|