"use server" import { v4 as uuidv4 } from "uuid" import Replicate from "replicate" import { RenderRequest, RenderedScene, RenderingEngine, Settings } from "@/types" import { generateSeed } from "@/lib/generateSeed" import { sleep } from "@/lib/sleep" const serverRenderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine // TODO: we should split Hugging Face and Replicate backends into separate files const serverHuggingfaceApiKey = `${process.env.AUTH_HF_API_TOKEN || ""}` const serverHuggingfaceApiUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}` const serverHuggingfaceInferenceApiModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}` const serverHuggingfaceInferenceApiModelRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}` const serverHuggingfaceInferenceApiModelTrigger = `${process.env.RENDERING_HF_INFERENCE_API_MODEL_TRIGGER || ""}` const serverHuggingfaceInferenceApiFileType = `${process.env.RENDERING_HF_INFERENCE_API_FILE_TYPE || ""}` const serverReplicateApiKey = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}` const serverReplicateApiModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}` const serverReplicateApiModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}` const serverReplicateApiModelTrigger = `${process.env.RENDERING_REPLICATE_API_MODEL_TRIGGER || ""}` const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}` const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}` const serverOpenaiApiKey = `${process.env.AUTH_OPENAI_API_KEY || ""}` const serverOpenaiApiBaseUrl = `${process.env.RENDERING_OPENAI_API_BASE_URL || "https://api.openai.com/v1"}` const serverOpenaiApiModel = `${process.env.RENDERING_OPENAI_API_MODEL || "dall-e-3"}` export async function newRender({ prompt, // negativePrompt, nbFrames, width, height, withCache, settings, }: { prompt: string // negativePrompt: string[] width: number height: number nbFrames: number withCache: boolean settings: Settings }) { // throw new Error("Planned maintenance") if (!prompt) { const error = `cannot call the rendering API without a prompt, aborting..` console.error(error) throw new Error(error) } let defaulResult: RenderedScene = { renderId: "", status: "error", assetUrl: "", alt: prompt || "", maskUrl: "", error: "failed to fetch the data", segments: [] } const nbInferenceSteps = 30 const guidanceScale = 9 let renderingEngine = serverRenderingEngine let openaiApiKey = serverOpenaiApiKey let openaiApiModel = serverOpenaiApiModel let replicateApiKey = serverReplicateApiKey let replicateApiModel = serverReplicateApiModel let replicateApiModelVersion = serverReplicateApiModelVersion let replicateApiModelTrigger = serverReplicateApiModelTrigger let huggingfaceApiKey = serverHuggingfaceApiKey let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel let huggingfaceApiUrl = serverHuggingfaceApiUrl let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger let huggingfaceInferenceApiFileType = serverHuggingfaceInferenceApiFileType const placeholder = "" // console.log("settings:", JSON.stringify(settings, null, 2)) if ( settings.renderingModelVendor === "OPENAI" && settings.openaiApiKey && settings.openaiApiKey !== placeholder && settings.openaiApiModel ) { console.log("using OpenAI using user credentials (hidden)") renderingEngine = "OPENAI" openaiApiKey = settings.openaiApiKey openaiApiModel = settings.openaiApiModel } if ( settings.renderingModelVendor === "REPLICATE" && settings.replicateApiKey && settings.replicateApiKey !== placeholder && settings.replicateApiModel && settings.replicateApiModelVersion ) { console.log("using Replicate using user credentials (hidden)") renderingEngine = "REPLICATE" replicateApiKey = settings.replicateApiKey replicateApiModel = settings.replicateApiModel replicateApiModelVersion = settings.replicateApiModelVersion replicateApiModelTrigger = settings.replicateApiModelTrigger } else if ( settings.renderingModelVendor === "HUGGINGFACE" && settings.huggingfaceApiKey && settings.huggingfaceApiKey !== placeholder && settings.huggingfaceInferenceApiModel ) { console.log("using Hugging Face using user credentials (hidden)") renderingEngine = "INFERENCE_API" huggingfaceApiKey = settings.huggingfaceApiKey huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger huggingfaceInferenceApiFileType = settings.huggingfaceInferenceApiFileType } try { if (renderingEngine === "OPENAI") { /* const openai = new OpenAI({ apiKey: openaiApiKey }); */ // When using DALLĀ·E 3, images can have a size of 1024x1024, 1024x1792 or 1792x1024 pixels. // the improved resolution is nice, but the AI Comic Factory needs a special ratio // anyway, let's see what we can do const size = width > height ? '1792x1024' : width < height ? '1024x1792' : '1024x1024' /* const response = await openai.createImage({ model: "dall-e-3", prompt, n: 1, size: size as any, // quality: "standard", }) */ const res = await fetch(`${serverOpenaiApiBaseUrl}/images/generations`, { method: "POST", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${openaiApiKey}`, }, body: JSON.stringify({ model: openaiApiModel, prompt, n: 1, size, // quality: "standard", }), cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as { data: { url: string }[] } // console.log("response:", response) return { renderId: uuidv4(), status: "completed", assetUrl: response.data[0].url || "", alt: prompt, error: "", maskUrl: "", segments: [] } as RenderedScene } else if (renderingEngine === "REPLICATE") { if (!replicateApiKey) { throw new Error(`invalid replicateApiKey, you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) } if (!replicateApiModel) { throw new Error(`invalid replicateApiModel, you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) } if (!replicateApiModelVersion) { throw new Error(`invalid replicateApiModelVersion, you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`) } const replicate = new Replicate({ auth: replicateApiKey }) const seed = generateSeed() const prediction = await replicate.predictions.create({ version: replicateApiModelVersion, input: { prompt: [ "beautiful", // "intricate details", replicateApiModelTrigger || "", prompt, "award winning", "high resolution" ].filter(x => x).join(", "), width, height, seed, ...replicateApiModelTrigger && { lora_scale: 0.85 // we generally want something high here }, } }) // no need to reply straight away as images take time to generate, this isn't instantaneous // also our friends at Replicate won't like it if we spam them with requests await sleep(4000) return { renderId: prediction.id, status: "pending", assetUrl: "", alt: prompt, error: prediction.error, maskUrl: "", segments: [] } as RenderedScene } if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") { if (!huggingfaceApiKey) { throw new Error(`invalid huggingfaceApiKey, you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`) } if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingfaceApiUrl) { throw new Error(`invalid huggingfaceApiUrl, you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`) } if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModel) { throw new Error(`invalid huggingfaceInferenceApiModel, you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`) } if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModelRefinerModel) { throw new Error(`invalid huggingfaceInferenceApiModelRefinerModel, you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`) } const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT" ? huggingfaceApiUrl : `/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%24%7BhuggingfaceInferenceApiModel%7D%60 const positivePrompt = [ "beautiful", // "intricate details", huggingfaceInferenceApiModelTrigger || "", prompt, "award winning", "high resolution" ].filter(x => x).join(", ") const res = await fetch(baseModelUrl, { method: "POST", headers: { "Content-Type": "application/json", Accept: huggingfaceInferenceApiFileType, Authorization: `Bearer ${huggingfaceApiKey}`, }, body: JSON.stringify({ inputs: positivePrompt, parameters: { num_inference_steps: nbInferenceSteps, guidance_scale: guidanceScale, width, height, }, // this doesn't do what you think it does use_cache: false, // withCache, }), cache: "no-store", // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { const content = await res.text() console.error(content) // This will activate the closest `error.js` Error Boundary throw new Error('Failed to fetch data') } const blob = await res.arrayBuffer() const contentType = res.headers.get('content-type') let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}` // note: there is no "refiner" step yet for custom inference endpoint // you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons if (renderingEngine === "INFERENCE_API") { try { const refinerModelUrl = `/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%24%7BhuggingfaceInferenceApiModelRefinerModel%7D%60 const res = await fetch(refinerModelUrl, { method: "POST", headers: { "Content-Type": "application/json", Authorization: `Bearer ${huggingfaceApiKey}`, }, body: JSON.stringify({ inputs: Buffer.from(blob).toString('base64'), parameters: { prompt: positivePrompt, num_inference_steps: nbInferenceSteps, guidance_scale: guidanceScale, width, height, }, // this doesn't do what you think it does use_cache: false, // withCache, }), cache: "no-store", // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { const content = await res.json() // if (content.error.include("currently loading")) { // console.log("refiner isn't ready yet") throw new Error(content?.error || 'Failed to fetch data') } const refinedBlob = await res.arrayBuffer() const contentType = res.headers.get('content-type') assetUrl = `data:${contentType};base64,${Buffer.from(refinedBlob).toString('base64')}` } catch (err) { console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`) } } return { renderId: uuidv4(), status: "completed", assetUrl, alt: prompt, error: "", maskUrl: "", segments: [] } as RenderedScene } else { const res = await fetch(`${videochainApiUrl}${videochainApiUrl.endsWith("/") ? "" : "/"}render`, { method: "POST", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, body: JSON.stringify({ prompt, // negativePrompt, unused for now nbFrames, nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best actionnables: [], // ["text block"], segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic width, height, // no need to upscale right now as we generate tiny panels // maybe later we can provide an "export" button to PDF // unfortunately there are too many requests for upscaling, // the server is always down upscalingFactor: 1, // 2, // let's completely disable turbo mode, it doesn't work well for drawings and comics, // basically all the people I talked to said it sucked turbo: false, // settings.renderingUseTurbo, // analyzing doesn't work yet, it seems.. analyze: false, // analyze: true, cache: "ignore" } as Partial), cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as RenderedScene return response } } catch (err) { console.error(err) return defaulResult } } export async function getRender(renderId: string, settings: Settings) { if (!renderId) { const error = `cannot call the rendering API without a renderId, aborting..` console.error(error) throw new Error(error) } let renderingEngine = serverRenderingEngine let openaiApiKey = serverOpenaiApiKey let openaiApiModel = serverOpenaiApiModel let replicateApiKey = serverReplicateApiKey let replicateApiModel = serverReplicateApiModel let replicateApiModelVersion = serverReplicateApiModelVersion let replicateApiModelTrigger = serverReplicateApiModelTrigger let huggingfaceApiKey = serverHuggingfaceApiKey let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger let huggingfaceApiUrl = serverHuggingfaceApiUrl let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel const placeholder = "" if ( settings.renderingModelVendor === "OPENAI" && settings.openaiApiKey && settings.openaiApiKey !== placeholder && settings.openaiApiModel ) { renderingEngine = "OPENAI" openaiApiKey = settings.openaiApiKey openaiApiModel = settings.openaiApiModel } if ( settings.renderingModelVendor === "REPLICATE" && settings.replicateApiKey && settings.replicateApiKey !== placeholder && settings.replicateApiModel && settings.replicateApiModelVersion ) { renderingEngine = "REPLICATE" replicateApiKey = settings.replicateApiKey replicateApiModel = settings.replicateApiModel replicateApiModelVersion = settings.replicateApiModelVersion replicateApiModelTrigger = settings.replicateApiModelTrigger } else if ( settings.renderingModelVendor === "HUGGINGFACE" && settings.huggingfaceApiKey && settings.huggingfaceApiKey !== placeholder && settings.huggingfaceInferenceApiModel ) { // console.log("using Hugging Face using user credentials (hidden)") renderingEngine = "INFERENCE_API" huggingfaceApiKey = settings.huggingfaceApiKey huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger } let defaulResult: RenderedScene = { renderId: "", status: "pending", assetUrl: "", alt: "", maskUrl: "", error: "failed to fetch the data", segments: [] } try { if (renderingEngine === "REPLICATE") { if (!replicateApiKey) { throw new Error(`invalid replicateApiKey, you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) } const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, { method: "GET", headers: { Authorization: `Token ${replicateApiKey}`, }, cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { // This will activate the closest `error.js` Error Boundary throw new Error('Failed to fetch data') } const response = (await res.json()) as any return { renderId, status: response?.error ? "error" : response?.status === "succeeded" ? "completed" : "pending", assetUrl: `${response?.output || ""}`, alt: `${response?.input?.prompt || ""}`, error: `${response?.error || ""}`, maskUrl: "", segments: [] } as RenderedScene } else { const res = await fetch(`${videochainApiUrl}/render/${renderId}`, { method: "GET", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as RenderedScene return response } } catch (err) { console.error(err) defaulResult.status = "error" defaulResult.error = `${err}` return defaulResult } } export async function upscaleImage(image: string): Promise<{ assetUrl: string error: string }> { if (!image) { const error = `cannot call the rendering API without an image, aborting..` console.error(error) throw new Error(error) } let defaulResult = { assetUrl: "", error: "failed to fetch the data", } try { const res = await fetch(`${videochainApiUrl}/upscale`, { method: "POST", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, cache: 'no-store', body: JSON.stringify({ image, factor: 3 }) // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as { assetUrl: string error: string } return response } catch (err) { console.error(err) return defaulResult } }